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A velocity- and mass-independent search for moving magnetic monopoles is being per-

formed by continuously monitoring the current in a 20-cm

2-area superconducting loop.

A single candidate event, consistent with one Dirac unit of magnetic charge, has been de-
tected during five runs totaling 151 days. These data set an upper limit of 6.1X107'% ¢m ™2

1

sec™! sr™! for magnetically charged particles moving through the earth’s surface.

PACS numbers: 14.80.Hv

The detection of a moving magnetic charge with
a superconducting ring is based solely on the long-
range electromagnetic interactions between the
magnetic charge and the macroscopic quantum
state of the ring.! Such a detector measures a
moving particle’s magnetic charge regardless of
its velocity, mass, electric charge, or magnetic
dipole moment. In this paper, the first experi-
mental results from use of this scheme are pre-
sented.

Superconductors make natural magnetic charge
detectors, as suggested by comparing the flux
quantum of superconductivity ¢ ,=hc/2e with the
flux emanating from a single Dirac charge 4ng
=hc/e. Dirac® was led to his value for the ele-
mentary magnetic charge by postulating that the
wave function of a single electron in the field of
a pole should be single valued. In superconduc-
tivity, the postulate of a single-valued macro-
scopic wave function leads to flux quantization.
The factor of 2 arises from the electric charge,
2¢, of the Cooper pairs.

Consider a magnetic charge ¢ moving at velocity
v along the axis of a superconducting wire ring of
radius b. Integrating Maxwell’s geng_ralized equa-
tion for the monopole current, curl(E)+(1/c)dB/
dt=— (47r/c)fi'm, over the area Sr in the plane of
the ring, we obtain

$LE-dl +c (do /dt)= - (4ng /c)o( 1),
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where Sr is bounded by a path I" that is every-
where inside the wire. If we neglect the finite re-
sponse time of the superelectrons, E will vanish
along T" and ¢ (#)= - 4ng6(¢), where we set ¢ =0
for {=—. The total flux through Sr is ¢ =¢,

+¢ s, ¢, from the monopole and ¢ ; from the in-
duced supercurrent. We find

B Yot
<pg(t)-—271g[1—26(t)+ le )

and ¢ ; = ~I(t)L, where I(¢) is the induced super-
current and L the self-inductance of the ring.
Thus, substituting 4ng =2¢,, we obtain

@ yut
101 i)

This result is independent of the choice of surface
St bounded by the path I' and corresponds to a
change of 2¢, through the ring (Fig. 1). The
change in current will occur with a characteristic
time given by b /yv.

In the general case, any trajectory of a magnetic
charge g which passes through the ring will re-
sult in a flux-quanta change of 2, while one which
misses the ring will produce no flux change. In
the less likely event that a magnetic charge pass-
es through the ring wire itself, it will leave a
trapped doubly quantized vortex, and some inter-
mediate total current will persist. Any electric
charge or magnetic dipole moment of the particle
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FIG. 1. Induced current in a superconducting ring for
an axial monopole trajectory.

will cause only small transient fluctuations and
no dc shifts. Thus, moving magnetically charged
particles can be detected by monitoring the cur-
rent in the superconducting ring.

In this experiment a four-turn, 5-cm-diam loop,
positioned with its axis vertical, is connected to
the superconducting input coil of a SQUID (super-
conducting quantum interference device) mag-
netometer.® The passage of a single Dirac charge
through the loop would result in an 8¢, change in
the flux through the superconducting circuit, com-
prised of the detection loop and the SQUID input
coil (a factor of 2 from 4ng =2¢, and of 4 from
the turns in the pickup loop). The SQUID and
loop are inside a 20-cm-diam, 1-m-long cylindri-
cal superconducting shield closed at the bottom,
and these are mounted inside a single Mumetal
cylinder. The combined shielding provides 180-
dB isolation from external magnetic field changes
and an ambient field of 5X107% G.*

The voltage output of the SQUID electronics,
which is directly proportional to the supercurrent
in the detection loop, is continuously recorded
through a 0.1-Hz low-pass filter onto a strip-
chart recorder. In addition, several times per
day digital voltmeter readings are taken to guard
against recorder failures.

The detector sensitivity has been calibrated in
three independent ways: (a) by measuring the
SQUID response to a known current in calibra-
tion Helmholtz coils and calculating their mutual
inductance to the superconducting loop (= 4%);

(b) by estimating the self-inductance of the super-
conducting circuit (x 30%); and (c) by directly ob-
serving flux quantization within the superconduct-
ing circuit (+ 10%). All three methods agree with-

in their independent uncertainties.

Two additional effects influence the exact de-
tector response. First, a magnetic monopole
whose trajectory intersects either the transform-
er loop in the SQUID, the twisted leads from the
SQUID to the loop, or the loop wire itself would
produce a shift of nonintegral magnitude. Com-
putation of the average area ratio of the loop to
the remainder of the transformer circuit indicates
that such events will be suppressed by a factor of
25 compared to loop events. Second, a particle
traversing the superconducting shield will leave
doubly quantized vortices wherever the trajectory
intersects a wall. The effect is a magnetic field
change inside the shield and an applied flux change
across the loop. The total induced current change
in the loop is AT=(8¢,/L)n-£(4, /Ag)], where
A, /As=0.06 is the ratio of the loop to shield
cross-sectional areas. For a trajectory that in-
tersects the loop, n=1, and for one that misses,
17=0. The geometric factor ¢ depends on the tra-
jectory impact parameter and inclination angles,
and has maximum value of 1 for axial trajectories
through the shield and a minimum of O for trans-
verse ones. Current changes of (0.06)8¢ /L or
less will be observed for trajectories that pass
through the shield but not the loop. The proba-
bility for such events with AI>(0.02)8¢ /L is
about 10 times larger than for the loop.

As of 11 March 1982 data have been recorded
for a total of 151 days. Several intervals through-
out a continous one-month time period are shown
in Fig. 2(a), where no adjustment of the dc level
has been made. Typical disturbances caused by
daily liquid-nitrogen and weekly liquid-helium
transfers are evident. A single large event was
recorded [Fig. 2(b)]. It is consistent with the
passage of a single Dirac charge within a com-
bined uncertainty of + 5% (resulting from the cali-
bration uncertainty and the distribution of geo-
metric factor £). It is the largest event of any
kind in the record. In Fig. 3 are plotted the 27
events exceeding a threshold of 0.2¢,, which re-
main after exclusion of known disturbances such
as transfers of liquid helium and nitrogen.® An
event is defined as a sharp offset with well-de-
fined stable levels for at least 1 h before and
after. Only six events were recorded during the
70% of the running time when the laboratory was
unoccupied. ,

The following statements about spurious detec-
tor response can be made:

(a) Line voltage fluctuations caused by two
power outages and their accompanying transients
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FIG. 2. Data records showing (a) typical stability and (b) the candidate monopole event.

failed to cause detectable offsets.

(b) 7f interference from the motor brushes of a
heat gun failed to produce any offsets when oper-
ated in close proximity to the detector.

(c) External magnetic field changes are atten-
uated by 180 dB, primarily from an exponential
factor of e™1+%#/¢ | where 2z =72 cm is the distance
in from the open top of the superconducting shield
and a =10 cm is the shield radius.

(d) Ferromagnetic contamination is minimized
using clean-bench assembly techniques and
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FIG. 3. Histogram of all event magnitudes.
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checked with magnetometer measurements within
the shield.

(e) The cvitical current of the loop is not
reached for currents a thousand times greater
than 8¢ ,/L and is typically 10® times greater.

(£) Mechanically induced offsets have been in-
tentionally generated and are probably caused by
shifts of the four-turn loop-wire geometry which
produce inductance changes. Sharp raps with a
screwdriver handle against the detector assembly
cause such offsets. On two occasions out of 25
attempts these have exceeded 6¢ , (75% of the
shift expected from one Dirac charge); however,
drifts in the level were seen during the next hour.

(g) No seismic disturbance occurred on 14
February 1982.

(h) Energetic cosmic rays depositing <1 GeV/
cm in traversing the wire would raise the local
wire temperature by only < 0.01 K, but a 5-K
change is needed to reach the critical tempera-
ture.

A spontaneous and large external mechanical
impulse is not seen as a possible cause for the
event; however, the evidence presented by this
single event does not preclude the possibility of
a spontaneous internal stress release mechanism.
Regardless, to date the experiment has set an
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upper limit of 6.1X10°!° ¢cm~2 sec™! sr”! for the

isotropic distribution of any moving particles
with magnetic charge greater than 0.06 g.

An observational upper bound on the mass den-
sity of monopoles is given by limits on the local
“missing mass.”® Visible matter has a meas-
ured local density of 0.09 Me/pc3 (solar masses
per cubic parsec), whereas th® mass density cal-
culated from the velocity distribution out of the
galactic plane is 0.14 M _/pc®. This local “miss-
ing mass” density estimate of 0.05 Mo/pc3 is in
good agreement with the halo mass estimates
extrapolated back to our local galactic radius,
which give 0.03 M_/pc’. If we assume this entire
“hidden mass” to be made up of monopoles of
mass 10 GeV/c? with isotropic velocities of or-
der 300 km/sec, as suggested from grand unifica-
tion theories,” the number passing through the
earth’s surface would be 4X107° ¢cm™2 sec™!
sr-'.® This would result in 1.5 events per year
through the detector loop.

The search with the present detector is being
continued, and two new systems of larger sens-
ing area are being built.
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