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We compute cross sections for the Drell-Yan process in N—N collisions at next-to-leading
order in a,;. The mass, rapidity, transverse momentum, and angular dependence of
these cross sections are presented. An estimate of higher order corrections is obtained
from next-to-next-to-leading order calculation of the mass distribution. We compare the
results with some of the existing data to show the quality of the agreement between
calculations and data. We present predictions for energies which will become available
at the RHIC and LHC colliders. Uncertainties in these predictions due to choices of
scale, scheme and parton distribution are discussed.

INTRODUCTION

The aim of this study is to provide a systematic survey of theoretical predictions
for the Drell-Yan process [1, 2] in nucleon—nucleon collisions at energies relevant to
ion—ion experiments at RHIC and LHC, and to discuss confidence limits for these
predictions. In an accompanying article, Van Neerven has reviewed the theory of the
Drell-Yan process, emphasizing the dependence of the production rate on the dilep-
ton’s mass M and rapidity y. We present calculations of the M and y distributions
using standard perturbative QCD. To supplement these calculations, we provide a
skeletal theoretical discussion to fix the notation and identify the uncertainties. In
addition, we study the experimentally-relevant transverse momentum and angular
distributions of the dileptons. These topics are treated in separate subsections,
since one must go beyond perturbation theory to compute these distributions.

Our predictions for do/dMdy are based on a perturbative analysis of the un-
derlying partonic processes to order ay [3, 4, 5, 6]. Results for do/dM are reported
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to order a2. We find that the perturbative corrections grow as M decreases. From
the point of view of the heavy ion physics, the mass region from 3 to 10 GeV is
of most interest. The relative magnitude of the O(a?2) correction in this range sets
one limit on our confidence in the applicability of perturbation theory.

At fixed order the calculated cross sections depend on the renormalization scale
Hp, the factorization scale p,,, and the regularization scheme. The form of the
renormalized hard-scattering matrix elements and the definition of the parton dis-
tributions are specified by the regularization scheme; DIS and MS schemes are
widely used. The physical quantities such as ag that enter the matrix elements are
defined at the scale pp, while the parton distributions are set at p,. Although
these scales are related to the momentum transfer ), the precise relation is pro-
cess dependent and not unique. The standard parton distribution sets have been
obtained assuming pip = pp, = p [7, 8, 9].

The scale and scheme dependence of our calculations provides an additional
measure of the accuracy of the perturbative description at the given order. From
the standpoint of perturbation theory, the choices of scales and scheme are arbitrary
— varying these choices introduces corrections at the next order in ag. However,
changing the scales and scheme in practice alters the numerical predictions for
collisions in the kinematic range relevant to heavy ion experiments. In this work we
discuss results for the DIS and MS schemes and vary p to test the scale dependence.

Confidence in our predictions at the LHC heavy ion energy /s ~ 5.5 A-TeV
is further limited by current experimental uncertainties in the parton distributions.
Specifically, the production of dileptons with M < 10 GeV in nucleon—nucleon col-
lisions at this energy probes the parton distributions at Bjorken & < 1072. This
region is accessible only to the ongoing experiments at HERA [10]. Consequently
the differences between the various parton distribution sets is largest in this region
[7, 8, 9]. We base our predictions on computations using state—of-the—art parton
distribution sets that are consistent with the current (1994) HERA data. To illus-
trate the maximum uncertainty in these predictions, we compare these results to
calculations using a recent set that does not exhibit the ‘low-z rise’ seen by HERA
[10], MRS D0’. As the experiments accumulate data, these uncertainties will be
reduced, thereby enabling more refined predictions before the start of the LHC
program.

We outline the theory used to study the mass, rapidity, transverse momentum
and angular distribution of the dileptons in the next section. In the following
section we compare our results to data and obtain predictions for RHIC and LHC.
Results for do/dMdy are obtained using a code provided by W. van Neerven and
P. Rijken. Transverse momentum spectra and angular distributions are obtained
following Refs. [11] and [12] respectively. The computation of these distributions
— and the p, spectrum in particular — requires a partial resummation of the
perturbation series together with nonperturbative input not contained in standard
parton distributions. The methods and uncertainties specific to these processes are
discussed in the appropriate subsections.
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THEORETICAL BACKGROUND

We now discuss the calculation of the Drell-Yan cross section in perturbative
QCD. Our goal here is to outline the theory so that the reader can make use of our
numerical results without extensive recourse to the literature. We provide a list of
essential references, but those who are interested in a more detailed discussion of
should consult the accompanying article of van Neerven [2].

Mass Distributions

The lowest order contribution to the Drell Yan process is quark—antiquark an-
nihilation into a lepton pair. The annihilation cross section can be obtained from
the ete™ — ptp~ cross section by including the color factor 1/3 and the charge
factor eg for the quarks. Since the variation of the center—of-mass energy /s of
the incoming quark and antiquark leads to pairs of different masses, it is useful to
consider a cross section that is differential in the mass M of the pair:

do N R d7a?
FIveln er608(5 — M?), 0= oo (1)

The four-momenta of the incoming partons are expressed in terms of the momentum
fractions of the colliding hadrons as

V5 V3

p = Y (21,0,0,21) P2 = (22,0,0,—22), @

where /s is the center—-of-mass energy of the hadrons. It follows that § = zizss.

The lowest order hadronic cross section is now obtained by folding in the ini-
tial state quark and antiquark luminosities determined by the parton distribution
functions:

1

dc% = &0/0 dayday8(zizys — M?) Xk:e%[qk(ajl,u)zjk(xg,,u) +(1<=2)]. (3
More precisely, the distributions ¢ and ¢ give the number densities of quarks and
antiquarks at momentum fraction & and factorization scale p which is of the order
of M, the only scale entering the calculation of the mass distribution.

The momentum fractions of the incoming partons which contribute to the LO
cross section can be expressed in terms of the rapidity of the pair, y, and a scaling
variable 7 = M?/s as

To1 = \/;61/, Too = \/7_'6_y. (4)

Using y = (1/2) In(201/®02), we write the double-differential cross section

, do R , -
<M dydMZ)BOm =007 ) hlae(aon, s (oa ) + (L= 2] = P, ()

exhibiting a scaling behavior in 7 at leading order (apart from the logarithmic
dependence on the factorization scale y).
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The inclusive lepton pair cross section also includes contributions from processes
in which the final state contains partons in addition to the lepton pair. These pro-
cesses are higher order in the QCD coupling ay. Perturbative QCD provides a
systematic way to calculate order by order in «g, the contributions from such pro-
cesses as well as from those with virtual quanta. Graphs for the next to leading
order processes include Compton, annihilation, and vertex corrections. The com-
plete next to leading order cross section is [3]

do 3’0 ! 1 T
S = — dxy dxydz 6(z1222 — 7)0(y — - In —
<dydM2)NLO s J, z1deydz 6(z1222 — T)8(y ) n$2)

x { [Z X (an(e1)s(e2) + 1 — 2])] [s1-2)+ 52 ooy

k

+

S b (gl arle2) + @ele2)) + [1 = 2])] |52 000 } ’

k

where the g and ¢ are evaluated at the scale y. The correction terms in the DIS
regularization scheme are

fo(z) = %[(22+(1—2)21n(1—z)+%_5Z+222:|.

Similar terms can be written down for the M S scheme [6].

We will focus on the behavior of the cross section at next to leading order.
Although a complete ((«?) analysis exists for the total cross section and the rapidity
integrated mass spectrum, the more experimentally useful double-differential cross
section is known only to O(ws). The contributions from soft and virtual gluons,
dominant at fixed target energies and 7 > 0.01 [2, 6], account for only part of the
O(a2) corrections to do/dydM? at the higher collider energies. On the other hand,
we find below that the O(a?) corrections to the rapidity integrated cross section
are typically quite small for the kinematic range of interest. This result supports
the reliability of the O(as) prediction from (6) throughout the rapidity range that
contributes most of the cross section. Such support is particularly useful in the low
mass region (M ~ M,y ), where a fast convergence of the perturbative series is far
from self evident.

Transverse Momentum Distributions

Experiments show that the net transverse momenta of lepton pairs produced
by the Drell-Yan process are of the order of 1 GeV for a dimuon mass, M, of 10
GeV. Such values are substantially smaller than the transverse momenta ~ M/2
carried by each of the leptons individually. On the other hand, the p,, of a Drell-Yan
pair is much larger than the few-hundred MeV typical of soft QCD. If we neglect
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the transverse momentum of the incoming partons, then the lowest order process
qq — v* — IT1~ produces a final state with net pp = 0. While any spread in the
initial momentum will increase the final p; on average, the intrinsic width of the
parton distribution is rather small, <p§,>soft ~ (0.3 GeV)?Z. This scale is determined
by the inverse hadron size, since the target and projectile partons must be localized
inside their parent hadrons. Therefore, we can attribute part of the measured p,,
to the parton’s intrinsic p,,, but not all.

The lepton pair acquires additional transverse momentum from production
mechanisms that occur beyond leading order in perturbation theory [13, 14]. For
example, in the Compton and annihilation processes

q9 —q7" and gq—"g (8)

pp of the lepton pair can be balanced by the recoil of the final state quark or
gluon. One can compute the p,, distribution perturbatively from these processes
and their radiative corrections. The perturbation expansion is well behaved for
pp ~ M. However, at low p;, the expansion breaks down and a resummation of the
perturbation series is required.

To see why this resummation is necessary, observe that the cross section in the
region p% < M? is dominated by the leading-logarithm contributions:

do g M2 2 M2 2, 4 M2
—2 ~ —211'1 —2 U1 —|—'U20[S h’l —2 +‘U3as h’l —2 —|—
de pT pT pT pT

where a; is evaluated at the scale M?. This series is effectively an expansion in
Qg lnz(MZ/p;), rather than o alone. The effective expansion parameter can be large

o 9)

at low p, even if as(M?) is small. The leading-logarithm series (9) describes the
effect of soft gluon radiation from the initial state ¢ and ¢ prior to their annihilation.
Specifically, these logarithms are remnants of the mass and collinear singularities
arising from the radiated gluons. The annihilation process in (8) contributes the
term o< o ln(Mz/p;)/p; and, in general, ¢ — 7* 4+ n gluons produces the term
of order af. Fortunately, the coefficients v; of Eq. (9) are not independent and
it is possible to sum the series exactly so that it applies even when «y 1n2(M2/p%)
is large [15, 16, 17, 18]. In addition, ‘subleading’ logarithm contributions, though
smaller, can also be important.

The formalism needed to sum the leading and subleading logarithms was de-
veloped by Collins, Soper and Sterman [17]. For each species of colliding partons,
one finds

MQ(%ZIW(resum) = ﬂ'é’oT(ﬁg/ ((2171.[))2 eib'pTW(b), (10)
v = e 74 (3 s + 0]
x (Co f1)(x1; 87/b%) x (Co fa)(wa; 57/b7). (11)

where s is the total hadronic center-of-mass energy, f1 and f» are the projectile
and target parton distributions of the two colliding particles, and z; and x5 defined
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by (4) are the dominant values of x as p, — 0. Note that the f; can be ¢, 7 or
g, depending on the process considered. The integration variable b is the impact
parameter, the variable conjugate to p;, and § = 2 €778, where 7 is Euler’s
constant. To obtain the total Drell-Yan rate at next-to-leading order, one must
sum (10,11) over ¢q, g¢ and gg initial states for all appropriate quark flavors; see
Appendix A in ref. [11] for details. The function C' is a coefficient function that
converts the parton distributions f into distributions C o f specific to the process
at hand. The functions A, B, and C(z) have perturbative expansions in ag, with
A and B starting at order as. The expansion for C' begins at order 1 for quarks
and order ay for gluons. These functions can be extracted to a given order from
the perturbative result, and have been determined for the Drell-Yan process at
next-to-leading order by Davies et al. [19].

The resummed result (10,11) applies only when p; < M? because it includes
only those terms that diverge as p;z as pp — 0. Omitted in (10) are nonsingular
contributions that are o {p% + M?}~1 at small pp. At pp ~ M the singular and
nonsingular contributions become comparable. On the other hand, conventional
perturbation theory works well at large p;., describing the complete p;. dependence
to a given order in as.

Bridging the low—p, and perturbative regimes is accomplished by adding in
the terms that are not resummed, the so-called remainder or nonsingular terms.
Arnold and Kauffman developed a prescription for calculating the remainder terms
that explicitly matches the high and low p,. results. Their prescription proceeds as
follows. One first expands the resummed result (10) in powers of as. This series,
da/dp; dydM?(asym), contains the singular l/p% part of complete perturbation
series da/dp% dydM?(pert). We refer to da/dp% dydM?(asym) as ‘asymptotic’ be-
cause it describes the perturbation series asymptotically as p;, — 0. The asymptotic
result in ref. [11] is expressed as convolutions of parton distributions with the co-
efficient functions of (11) and with Altarelli-Parisi splitting functions arising from
the scale dependence of the parton distributions. With the singular terms isolated
in the asymptotic result, the remainder is the difference between the perturbative
result and the asymptotic result,

do do
R=—F—+—— t) — ——— . 12
dp2, dydM? (pert) dp2 dydM? (asym) (12)
The perturbation series for the p, distribution — and therefore /2 — has been

computed to 2nd order in ref. [14]. The total cross section is then written

do do do do

0 _(total) = ——2 _ 47 )97
a2 aganrz totad dp? dyd M (reS“dep; dgaarz Pert) dp?, dyd M”

(asym).
(13)
The “matching” is now manifest: at low p,. the perturbative and asymptotic pieces
cancel, leaving the resummed; at high p; the resummed and asymptotic pieces
cancel to 2nd order, leaving the perturbative contribution. The relative error is
explicitly of order a2, see ref. [11].
At very high p, the matching prescription breaks down and one must switch

back to the perturbative result. This breakdown occurs because da/dp% dydM?(asym)
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is only known to 2nd order, while da/dp; dydM?(resum) in effect contains all or-
ders in ag. For example, da/dp% dydM?(resum) introduces terms o a3(In pT)‘r’/pé
that will not be cancelled in the 2nd order expression for da/dp; dydM?(asym).
Although such terms are higher order in as they become important at large p,,
for kinematic reasons. The resummed and asymptotic cross sections depend on
parton distributions evaluated at a fixed z, independent of p,., whereas the parton
distributions probed by the perturbative result fall with increasing p,. Thus, the
higher order terms come to dominate at large p; and one must switch back to the
perturbative result. An appropriate value of p,, at which to do this is when when
da/dp% dydM? has fallen off to the extent that R is comparable to the total. At
that point, the terms being resummed no longer dominate the cross section and at
higher p,. the perturbative prediction is more reliable than (13). The switch is done
at sufficiently high p,, so that the error incurred is free of large logarithms.

The form factor W (b) contains ag and parton distributions evaluated at the
scale 1/b, and its evaluation is problematic for b > 1 GeV~!. Moreover, one wishes
to include the effect of the intrinsic p;, of the partons. Both of these ends are met
by replacing

W(b) — W (bs)e™ Snr(®) (14)

where b, = b/y/1 + (b/bmax)? and by = 0.5 GeV~!. The Collins-Soper-Sterman
formalism specifies that S,, have a term which depends on In M and a term which
does not and that the In M term does not depend on the colliding hadrons or on
the parton z’s. However, beyond these constraints Sy, is arbitrary and must be
extracted from experiment. Ladinsky and Yuan parametrize

Snp = g1b [b+ g3 In (7/7)] + g2b% In (M/2My), (15)

where 7 = z125 [20]. To fit the ISR p,, distribution from R209, they take g; =
0.11 GeV?, g = 0.58 GeV?, g3 = —1.5 GeV?, 7y = 0.01 and M; = 1.6 GeV. Note
that these parameter choices are somewhat different from those in ref. [11, 19].
Momentum distributions presented in the work are computed using a code
adapted from ref. [11]. One source of uncertainty in these predictions is the neglect
of higher orders in ag. The difference between the perturbative and matched results
at high p;, is one indication of this uncertainty. Further ambiguity arises in our
estimate of the intrinsic p;, smearing, which is entirely phenomenological.

Angular Distributions

It is possible to probe the spin structure of the production amplitudes by mea-
suring the angular distribution of the dileptons.
The general form of the angular distribution is

do 3 do

A
— = ——————— x [l 4+cos? 0+ —(1 — 3 cos? )
dM?2dydp2dQ 16w dM2dydp2 2

A
+ Ay sin 26 cos ¢ + 72 sin? 0 cos 2¢] (16)
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where the angles § and ¢ are measured in the dilepton rest frame with respect to
an arbitrary axis. For calculations with underlying QCD processes, it is convenient
to evaluate the A; in the Collins—Soper frame [21], where the reference axis is the
bisector of the beam and (anti) target directions. This choice in some respect
minimizes the effect of intrinsic parton transverse momenta.

For the experimental analysis, it is standard to use an alternate parameteriza-

tion
do

@N1—|—/\c0826—|—,usin29cos<b—|—%sin29c082¢. (17)

The relationship is simply obtained

| 2= 340
24 A4
24
'U_Q—I—Ao
24,
= . 1
v A (18)

For calculations in perturbative QCD, one embeds the partonic expressions for
A; x do/dM?dydpr? into integrals over parton density functions just as in the
previous sections. The Born term involves only zero transverse momentum, and
the virtual photon production amplitude vanishes for zero helicity. Thus all of the
A;’s are zero and the angular distribution is purely 1 + cos? #. For the parton level
A; the leading order (LO) perturbative corrections of order e have been calculated
through the spin amplitudes in the annihilation and Compton amplitudes. One
finds in all cases the relationship Ag = As, or equivalently A = 1 — 2v, such that
the @ and ¢ distributions are correlated. Calculations in NLO of order a2 are much
more complicated [22], but in general only alter the angular coefficients at the 10%
level [23]. However, the correlation above is then violated.

In this study we have calculated the perturbative cross section and amplitudes
Ap and A; using the LO expressions (remember at this level Ag = As).

do 272 as(p d]:l dzo
WAZ = 27’TM6 / / —(S I112—£122—I221—|—T)

{{Ze qr (1, pt) qr(za, )+(—1)i(x1<—>x2))]12134’

k

[Ze 9(@1, ) (ar (@2, 1) + Gr(@a, 1)) + (—1) (21 H‘l‘Z))]A?q}: (19)

k

where 2 5 = [7(14(p, /M)?)2 eV are generalizations of (4) for pp # 0. To calculate
the cross section alone, one replaces the parton-level A; with the parton-level cross
section Y. Expressions for these quantities are:
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A99
I VLS Ve
o M?s1% M?—u M? —1
Aqq: _
1 [ ut ] <M2—t M2—u)
i}gq:(M2_5)2+(M2_t)2
—st
qu _ —U[(5+M2)2+(M2 _t)Q]
o = 2 __ . 2
s(M? —u)(M? —1t)
- M2u1s (M? —u)?2 —2(M? —1)?
A== : (M2—)u) (J\(Jz_t)) (20)

and one must make the replacement ¢ — u for the gluon-quark terms when inter-
changing projectile and target.

Note that the invariants s, ¢, u, and M? are calculated with parton momenta in
the annihilation and Compton diagrams, and the Aj are given in the Collins—Soper
frame. We have used the LO «g values for each parton distribution set used in
these calculations, as is appropriate for our LO angular distribution expressions.
The scale is taken to be y = M 1in all cases.

One can see from the structure of parton-level amplitudes in Eq (20) how the
angular distribution coefficients change as the perturbative contributions grow with
pp- For the qg subprocess, one finds the relation

%
Al = L 347, 21
0 P% =+ M2 ( )
Since this relation holds for all parton momenta, one predicts that Ay and hence A
will be independent of the parton distribution functions. It will also be independent
of energy and rapidity, and exhibit a characteristic function of w = (p,,/M)?. This
property was found some time ago [24, 25], and the prediction in the Collins—Soper
frame at any fixed y is

2—w

AT = . (22)
24+ 3w
One sees that as w increases with p,., the virtual photon polarization state increases
in the zero helicity mode. The limiting value as p,, — oo is A = —1/3, corresponding
to a factor of two for the ratio of longitudinal to transverse photon production.
There is no corresponding relation for the A; amplitude.

A similar analysis for the gg amplitudes does not yield a relation such as
Eq. (21). However, one can get an approximate result which only depends on the
steeply-rising behavior of the parton distribution functions at small 2. If the integral
over parton momenta is saturated by the values at the smallest possible z—values, for
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small rapidity values one samples only at the point —u = —t = p% + Pry /p% + M2,

The corresponding amplitude relationship is then

R 5p2 .
A~ ——L 391 23
0 M2 + 5]7% ) ( )
which leads to a new characteristic function
2 —bw
M= ——— 24
2+ 15w (24)

These relations were first found in the Gottfried—Jackson frame [25] for y-integrated
quantities, but apply in the form above in the Collins—Soper frame at fixed y [26]
sufficiently small such that A; &~ 0. One can see that the characteristic functions are
related by a rescaling of w by a factor of five between the ¢q and the gq subprocesses.

Our normalized A}s and calculated A, p, and v values are valid only in a re-
gion of transverse momentum p,, large enough that the perturbative terms may
be expected to dominate the amplitudes. At lower values of p,,, the soft gluon
resummation technique must be used to calculate the p,-dependence of the cross
section. As noted by Chiapetta and Le Bellac [27], the A; terms do not enter into
the resummation, since only the part proportional to 1 + cos? @ is able to combine
with the soft gluon resummation amplitude. Thus at low p; one should simply
replace the perturbative cross section with the resummed differential cross section,
and use this factor to normalize the A;’s integrated over parton distributions. It is
unclear, however, how to determine in general where the perturbative region begins.
At the Fermilab and CERN fixed-target and ISR energies which provide the data
presently available for p;. distributions, it appears that the perturbative terms will
dominate only when p,, > M. On the other hand, calculations for W and Z pro-
duction at SPS and Tevatron energies indicate that the perturbative contributions
are dominant already when p,, < M/2. Due to this uncertainty, we present for this
study only the perturbative cross section and the perturbative A; values, plus the
calculated A and p values. In regions of small p;, one should use the resurnmed
cross sections to renormalize the A; and recalculate the A and p values, but the
crossover point in p, must be determined independently for each collider energy
and dilepton mass.

Nuclear Effects

We now comment on possible nuclear modification in the Drell-Yan process. On
naive geometrical grounds, one expects that the cross sections differential in M and
y in central ion-ion collisions increase with nuclear mass by a factor oc A%/3 relative
tothe N—N cross section. Any modification of the parton distributions in the target
and projectile nuclei will modify this dependence. In particular, one expects parton
shadowing to be very important in the small z range probed by midrapidity Drell-
Yan production at the RHIC and, especially, at the LHC. Shadowing can reduce
the A dependence of the cross section relative to the expected increase by as much
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as a factor of ~ A3 ~ 6 in Au-Au collisions. Such a dramatic suppression would
be larger than the combined uncertainties in our N — N cross section calculations.
It will nevertheless be crucial to measure the N — N rates at RHIC and LHC to
study shadowing and other such nuclear effects.

Initial state parton scattering has been measured in Drell-Yan studies of hadron—
nucleus collisions. This scattering does not appreciably affect rapidity and mass
distributions, but can modify the p,, spectrum. Specifically, initial state scattering
broadens the transverse momentum distribution in a nuclear target relative to a
hadron target, corresponding to an increase o A!/3 in (p%) This broadening is
measured experimentally. Note that it is because of this effect that we have not
compared p,, calculations to nuclear target data.

COMPARISON WITH DATA

In this section we compare calculations to recent experiments in order to illus-
trate the level of agreement of the QCD calculations with data. We have chosen
not to optimize the calculations, e.g., by choosing the scales via some prescription
[28]. Instead we vary the regularization scheme and scales in order to determine
the level of uncertainty in the prediction. We exclude data on nuclear targets from
our analysis, because nuclear effects are not addressed in this work. Even so, our
comparisons with data are not exhaustive and we apologize to our experimental
colleagues for our incompleteness.

Mass Distributions

A comparison of the perturbative calculations to the data from fixed-target
experiments is discussed in detail by Rijken and van Neerven [6]. The overall feature
of most of the fixed—target data for do/dM is described by the Born term multiplied
by a K factor in the range 1 < K < 2. The reason for this ‘factorization’ is
understood [16, 17], and the goal of perturbative calculations of the mass spectrum
is to calculate the K factor. One finds that the O(as) calculation can account for
50 — 75% of the experimental K factor. It is not clear whether K can be calculated
entirely using perturbation theory. As we discuss below the situation improves for
the data at highest energies now available.

In addition Rijken and van Neerven calculate the NNLO, O(a?), contribu-
tions from soft and virtual gluons (S + V') to the double-differential cross section
do/dMdz, and study the validity of this approximation at the O(as) where the
exact result is known. They find the approximation valid that at the fixed-target
energies for /7 = M/y/s > 0.3. Assuming this to be the case also for the NNLO
contribution, they conclude that part of the discrepancy between the data and the
O(as) result can be attributed to the S+ V' contributions [6].

We have extended the comparison in ref. [2] to the mass dependence of the dou-
ble differential cross section, do/dMdz,, measured in the FNAL E772 experiment
at 800 GeV (y/s = 38.8 GeV) [29] and in the CERN ISR experiment R209 [30]
at /s = 44 and 62 GeV. In Fig. 1 we show the mass distributions from the E772
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Figure 1: The calculated [6] scaling function M3do/dMdz for four values of Feyn-
man z, = r compared to pp — ptp~ data at /s = 38.8 GeV from FNAL E772
[29]. Born, Qas and Qa2 cross sections are indicated by the dash-dotted, solid and
dashed curves. Next-to-leading corrections are obtained in the S+V approximation.

experiment [29] at four different x,, values for the pair, z, = 0.125, 0.225, 0.325,
and 0.425 together with results from a calculation in the MS sceme using the MRS
D—' parton distributions [7, 8]. We take the scale u equal to the mass of the pair,
as discussed later. At low z, the data and the perturbative calculation are in fairly
good agreement. The calculated cross section is slightly below the data at the lower
end of the measured mass range and slightly above at the higher end. With increas-
ing z,, the difference between the data and the calculated results increases at the
low-mass end of the spectrum.

At this energy the validity of the S+V approximation for the O(as) contribution
is~ 10 % at M = 20 GeV and decreases to ~ 50% for M = 3 GeV, the approximate
result being larger than the exact calculation. If the pattern is the same for the
second order corrections, the complete NNLO calculation would deviate from the
NLO results even less than shown in Fig. 1.

In Figs. 2 and 3 the data on do/dMdz , measured at CERN ISR [30] at /s = 44
and 62 GeV and at z = 0 are compared to calculations. At both energies the Born
term alone reproduces the continuum data between the J/ and the T. For the large
mass region the corrections improve the comparison. At /s = 44 GeV only results
for the MRS D—’ structure functions and for the scales set to the mass of the pair,
Hp = pp = M, are shown. The NNLO correction calculated in the soft plus virtual
gluon approximation is seen to be clearly smaller than the NLO correction. Its
precise magnitude cannot, however, be trusted with decreasing values of 7 = M?/s.
At /s = 62 GeV the S + V contribution in the NLO term is twice the complete
result at small masses. This implies that the uncertainty in the NNLO correction
in the mass (or 7) range of interest in our extrapolations to higher energies is of
the order of the correction itself. Fortunately the correction is small, and in the
following we choose to show results with NLO corrections only. We should like to
emphasize that all the available information on the NNLO contributions, including
the full calculation for the rapidity integrated and total cross sections, indicate that
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Figure 2: Same as Fig. 1 compared to ISR R209 data [31] at /s = 44 GeV.

the corrections add at most 20 % to the NLO corrected cross sections.

At /s = 62 GeV we show results for MRS D—', D0/, and the GRV HO parton
distribution sets [7, 8, 9] with i, = p, = M and study the scale dependence in the
case of MRS D—’ set using the NLO results. It is not surprising that the different
sets give very similar results since they have been determined from data which covers
or is close to the kinematic region we consider here. The differences are too small
to discriminate between any of these sets. Varying the scale introduces a larger
change in the results at this energy. Specifically, an increase of the scale reduces
the calculated result. Nevertheless, for M < 10 GeV the change is inconsequential
and we choose to present our extrapolations using p, = p, = M.

Transverse Momentum Distributions

Transverse momentum spectra computed at next-to-leading order following
Arnold and Kauffman [11] are compared to data from ISR experiment R209 /s =
62 GeV [31] in Fig. 4. The nonperturbative parameters employed here (15) were
obtained using a leading-order calculation in ref. [20] by fitting data from this exper-
iment and FNAL experiment E288 at /s = 27.4 GeV [32]. Our NLO calculations
are performed using the MRS D—' parton distributions at the scale M.

We compare calculations to Fermilab experiment E772 at /s = 38.8 GeV in
Fig. 5. The data in fig. 5 are averaged over the range 0.1 < x, < 0.3 for the three
different mass bins shown. Our calculations at this lower energy are in excellent
agreement with the shape of the momentum spectra. In particular, the variation
of the p,, distributions with mass agrees with data. However, present calculations
overpredict the integrated rate by ~ 50%. In view of this disagreement, we present
RHIC and LHC predictions for transverse momentum distributions normalized to
the total cross section.
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Angular Distributions

The only data presently available on the angular distribution coefficients are
from fixed-target #— N experiments at Fermilab E615 [33] and CERN NA10 [34, 26].
These experiments cover similar kinematic regions, roughly /s &2 20 GeV, 4 < M <
8 GeV, and 0 < p, £ 3 GeV. The general trend of the data produces values of A
which are close to unity and almost independent of p;, u close to zero, and v
increasing with p,.. The perturbative predictions are in agreement with the p and v
values, but fall below the A values at the highest p,,. This behavior can be brought
into agreement with data via the procedure of soft gluon resummation, which also
appears necessary to reproduce the magnitude of the p,, dependent cross section
[27]. However, this procedure then brings the predictions for v down close to zero,
in significant disagreement with data. The overall result is a violation of the relation
1 — A —2v = 0 in either the perturbative or resummed predictions. This relation
should hold exactly at LO QCD and has slightly positive contributions from the
higher order corrections [23]. The data show definite negative values, which are
difficult to understand in a QCD calculation. In fact, this has led to attempts
to fit this data with models incorporating initial state correlations of color fields
which lead to spin correlations [35]. A general conclusion must be drawn from the
7 — N data that the angular distribution results are not well understood within
perturbative QCD.

NUMERICAL RESULTS FOR RHIC AND LHC ENERGIES

We now turn to our predictions for RHIC and LHC energies and their uncer-
tainties.

Mass and Rapidity Distributions

Mass distributions for p-p collisions are presented in Tables 1-4 and Figs. 6—
11. In fig. 6 we show the scale dependence at /s = 200 (a) and 5500 GeV (b)
for different fixed values of the pair mass as a function of u/M. Not surprisingly,
the dependence is stronger for smaller masses. The peak at small scale for M =4
GeV is caused by the increase of ag(M) as M approaches the A,,. Perturbative
calculations are not expected to be valid at such a small scale. For large values of
the scale the dependence of the results is weak, although do/du does not vanish,
as would be the case if o were locally independent of u. We take the scale to be
M for our RHIC and LHC predictions. These results imply that the uncertainty in
these prediction due to the scale ambiguity is ~ 25%.

The scheme dependence of the double differential cross section is shown in
Figs. 7 and 8 for /s = 200 GeV and 5.5 TeV. Observe that the scheme dependence
of the parton distributions alone leads to a 10% difference in the Born terms. When
the O(as) corrections are added the difference between the schemes decreases. This
difference is smaller than the calculated correction, as expected since the scheme
dependence of the cross section is of higher order. The difference of the Born terms
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is expected to be of the order ag. This seems to be the case even though the
difference is smaller than the O(ag) corrections.

As mentioned earlier, the O(a?2) corrections to do/dMdy have recently been
studied [5, 6] but are not yet completely known. It has been shown [3] that at the
present fixed—target energies the Qo corrections are dominated by the soft and
virtual gluon corrections. Here we are interested in collisions at larger values of
/s and smaller masses, down to 2-3 GeV. It seems that the soft plus virtual gluon
approximation breaks down in this domain. However, the full O(«2) result is known
for the rapidity integrated cross section do/dM [4]. We show the results at the LHC
energy, v/s = 5.5 TeV, both for the cross section, Fig. 9a, and the theoretical K
factor Fig. 9b. Above M = 4 GeV the second order corrections are a small fraction
of the first order corrections and the perturbation theory seems to converge rapidly.
At smaller values of mass the perturbative results become less reliable but even at
M = 2 GeV the second order correction is not more than ~ 10% of the Born term.
It seems that extending the perturbative calculations down to this mass region is
still meaningful with an uncertainty of < 25%.

The parton distribution functions are quite well known for z 2 1072 and recent
parametrizations given by different groups [7] are essentially equivalent. We give
the results at /s = 200 GeV and 5.5 TeV for three different sets: MRS D(’, D—'
[8], and GRV HO [9]. These sets differ from each other for z < 1072 and essentially
span the interval compatible with the present HERA data. The D0’ set goes slightly
below the data and the MRS D—' set slightly above.

Fig. 10 shows the mass spectrum for dileptons at RHIC energy. The differences
in the results for different parton distributions are < 20%. For the LHC energy
the situation is much worse, as shown in Fig. 11. The parton distributions are now
probed down to # = M/\/s ~ 107* and the uncertainty in the cross section at
M = 3 GeV is almost a factor of 4 decreasing to a factor less than 2 at 10 GeV.

Rapidity distributions at the RHIC energy are presented for fixed pair mass
in Fig. 12 for the MRS D—’ parton distribution set. The interesting feature is the
increase of the cross section at the smaller mass values as the rapidity increases from
0 to ~ 3. As is seen from Eq. (4), 21 increases and z2 decreases with increasing
y. The growth of the cross section reflects the faster increase of z2q(x2, i) with
decreasing z2 as compared to the decrease of x1¢(x1, yF) with increasing «;. This
depends on the detailed shape of the parton distributions at low z and, e.g., for D0’/
set the cross section is almost flat in the central rapidity region.

At /s = 5.5 TeV the increase of cross section with y occurs up to higher values
of mass. For M = 3-10 GeV the cross section peaks at y ~ 4 where its value is
typically twice that at y = 0 for the MRS D—' set.

Transverse Momentum Distributions

Transverse momentum distributions for p-p collisions at the RHIC and LHC
heavy-ion energies are shown in Figs. 13-19 normalized to the p,-integrated cross
section. To understand some of the features of these spectra, we focus on the RHIC
results, Figs. 13-17. Fig. 13 shows p(p, ), the normalized p,. distribution calculated
at next-to-leading order for M = 4 GeV and y = 0. The normalization factor is
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Figure 12: The cross section do/dMdy at fixed values of M as a function of y for
the RHIC energy, /s = 200 GeV.

the p,. integrated cross section do/dydM. The dashed curve is the perturbative
prediction valid at high p,, while the solid thin curve is the matched total cross
section (13). Fig. 14 shows the leading order result at the same energy. Observe
that the difference between the matched and perturbative curves at high momentum
is larger for the LO calculation compared to the NLO one.

Our prediction — the thick solid curve in Fig. 13 — switches between the
matched and perturbative solutions, as discussed earlier. Although the matched
result (13) formally applies at all momenta, it is not trustworthy at high p,, where
the remainder R (dash-dotted curve) exceeds the total matched cross section. The
difference between the matched and perturbative results is higher order in ag; one
can regard this difference as a measure of the uncertainty introduced by our trun-
cation of the perturbation series. Observe that this uncertainty is quite small, as
we emphasize in Fig. 15 by plotting the results with linear axes.

To illustrate how the matching works, we show the resummed, asymptotic and
perturbative components of the matched solution (13) individually in Fig. 16. We
see explicitly that the divergent asymptotic part (dash-dotted curve) dominates the
perturbation series (thin solid curve) at low p.,. These contributions cancel at low
P, 0 that the matched cross section is determined by the resummed result (10,11).

In Fig. 17 we show the p; spectrum at RHIC for M = 10 GeV. The effect
of switching is smaller at the higher mass scale. Figs. 18 and 19 show the p,
spectrum at LHC for /s = 5.5 TeV, y = 0 and M = 4 and 10 GeV at next-to-
leading order. The matched expression is valid for the entire region p, < 2M;
switching is unnecessary in this range.

Angular Distributions

For the calculations of angular coefficients in Eqgs. (16) and (17) the default par-
ton distribution functions are the MRS D—'. We have used fixed-y values mainly
at zero, but also up to maximum allowed by kinematics in some cases. We study
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the mass range 3 < M < 30 GeV with 0 < p, <2M in each case.

Fig. 20 shows the A coefficient at RHIC energy for the default values. As ex-
pected, it decreases with increasing p,, and approaches a minimum value of —1/3
for large p;, and scales with p,./M as predicted by either the ¢g (exact) or gq
(approximate) subprocesses. The small scaling violations are an indication that the
dominant subprocess must be ggq, as one might expect in a p-p interaction. This
is verified by separate calculation of the subprocess contributions. We have also
verified that the predicted A values are approximately independent of both /s and
the choice of structure function.

All of these calculations were done at y = 0, where p is consistent with zero,
as expected from the target-projectile interchange symmetry. At large y, however,
we expect to see significant deviations from the simple scaling predictions. Fig. 21
shows the A and u values for several rapidities. We see that as the yu parameter be-
comes nonzero, a corresponding nonuniversal behavior sets in for the A curves. The
corresponding calculations at LHC energy are shown in Fig. 22, where much larger
rapidities can be reached. In Fig. 23 we show the corresponding M-dependence
at y = 5 for LHC. Clearly, no universal scaling appears, as exhibited by the same
calculations as a function of p,./M in Fig. 24.

At low p,., all of these calculations will be modified by the soft gluon resumma-
tion procedure. In general, one would expect A & 1 and u ~ 0 for p,-values up to
the point where the perturbative cross section becomes dominant. As an example,
we calculate A and p at /s = 38.8 GeV, where the E772 experiment has measured
the p,, distributions [29]. In Fig. 25 we compare their data with the LO perturbative
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Figure 22: Same as Fig. 21 for /s = 5500 GeV.
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Figure 23: Angular coefficients A and g variation with M at large rapidity.
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Figure 24: Angular coefficients A and p violation of M scaling at large rapidity.

calculations. As expected, the low-p, region shows the perturbative divergences,
the intermediate-p,, region is underestimated by the perturbative terms, and there
is some evidence that the data is being matched by the perturbative calculation
as p,. approaches values near M. We assume that a proper resummation procedure
would match the data at low-p, and simply rescale the perturbatively-calculated
A; with the ratio of measured to perturbative cross sections at each p,. Shown
in Fig. 26 are the A and u coefficients for each case. One sees that at low-p,, the
resummation-corrected values remain closer to the uncorrected Born term predic-
tions, z.e., A = 1, u = 0. Since the p,, values at which the perturbative calculations
become dominant must be separately determined for each energy and mass value,
we simply tabulate the perturbative cross section and the corresponding Ag and A,
values for this study at the appropriate RHIC and LHC energies. For each individ-
ual case at low p,,, one must then rescale the A; with the ratio of perturbative cross
section to resummed (or experimental) cross section values, and then recalculate
the A and p parameters.

COMMENTS AND CONCLUSIONS

We have presented perturbative QCD calculations of the Drell-Yan process
relevant to experiments with heavy ions at future high-energy colliders. The ap-
plicability of our perturbative calculations has also been addressed. In the energy
range where experimental results are presently available, the calculations and the
data agree to a level of ~ 30% or better. In the high energy domain, /s 2 200
GeV, the perturbative series seems to converge well even down to pair mass of ~2-3
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Figure 25: LO perturbative p; dependence compared with E772 results.
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Figure 26: Angular coefficients A and p with resummation corrections at low p,..
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GeV with a NNLO contribution of the order of 10% in the rapidity integrated cross
section, do/dM. The dependence on the factorization scheme and on the factor-
ization and renormalization scales is not strong except for the smallest considered
values of the pair mass, where we estimate the uncertainty to be ~20-30%.

At LHC energy the most serious uncertainty arises from the uncertainty in the
parton distribution functions in the small—z region. Different sets which are not
ruled out by the present HERA data lead to estimates which differ by a factor of
3-4 for M ~ 3 GeV. Since a large pair rapidity indicates a small z for one of the
incoming partons, the uncertainty in the parton distributions shows up also in the
rapidity dependence of pairs. For the MRS D0’ set the rapidity distribution is flat
in the central region but for the MRS D—' it first increases with increasing y before
the decrease at the phase space boundary.

From the cross sections for a hard process in a nucleon-nucleon interaction the
number of such processes in a nucleus-nucleus collision can be obtained by multi-
plication with the overlap function for the colliding nuclei as defined in [36]. This
approach presumes that factorization holds also for nuclear collisions. It also ne-
glects the dependence of the shadowing of parton distributions on the local amount
of overlap in the transverse plane. It should be kept in mind that further studies
are needed on the shadowing and on the validity of the factorization assumption,
especially for this relatively low-mass region of pairs in which we are interested.
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Table 1. Inclusive cross section for Drell-Yan pairs in p-p collision

do

M3 Qyd il [nb GeV?]
Vs = 200 GeV
M [GeV] Born Born+LO Kin Born Born+LO Kin
MRS D-' MRS D-' | MRS D-/ MRS D0’ MRS D0’ MRS D0’
3.0 0.9694E401 | 0.1338E+02 1.380 0.9230E+01 | 0.1288E402 1.395
4.0 0.9523E401 | 0.1274E+02 1.338 0.9457E401 | 0.1262E+02 1.334
5.0 0.9304E+01 | 0.1222E+02 1.313 0.9441E401 | 0.1232E+02 1.305
6.0 0.8946E+01 | 0.1163E402 1.299 0.9182E+01 | 0.1185E402 1.290
7.0 0.8525E+01 | 0.1100E402 1.289 0.8791E+01 | 0.1124E+02 1.278
8.0 0.8091E401 | 0.1037E+02 1.281 0.8347E401 | 0.1055E+02 1.264
9.0 0.7703E401 | 0.9836E+01 1.276 0.8007E401 | 0.1011E+02 1.262
10.0 0.7304E401 | 0.9297E+01 1.272 0.7621E4+01 | 0.9604E+01 1.260
11.0 0.6920E+01 | 0.8793E4+01 1.270 0.7227E+01 | 0.9100E4+01 1.259
12.0 0.6551E401 | 0.8310E+01 1.268 0.6835E+01 | 0.8576E+01 1.254
13.0 0.6196E+01 | 0.7861E+01 1.268 0.6504E+01 | 0.8172E+01 1.256
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15.0 0.5530E+01 | 0.7028E+01 1.271 0.5835E401 | 0.7350E+01 1.259
16.0 0.5222E+01 | 0.6643E401 1.272 0.5511E401 | 0.6942E+01 1.259
17.0 0.4924E401 | 0.6274E+01 1.274 0.5224E401 | 0.6597E+01 1.262
18.0 0.4641E401 | 0.5924E+01 1.276 0.4943E401 | 0.6256E401 1.265
19.0 0.4373E+01 | 0.5584E+01 1.276 0.4668E+01 | 0.5922E+01 1.268
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Table 2. Inclusive cross section for Drell-Yan pairs in p-p collision

do

M3 Qyd il [nb GeV?]
/s = 500 GeV
M [GeV] Born Born+LO Kin Born Born+LO Kin
MRS D-' MRS D-' | MRS D-/ MRS D0’ MRS D0’ MRS D0’
3.0 0.1411E402 | 0.1906E+02 1.350 0.1125E402 | 0.1582E+02 1.405
4.0 0.1408E+02 | 0.1844E+02 1.309 0.1234E402 | 0.1652E+02 1.338
5.0 0.1380E402 | 0.1773E+02 1.284 0.1282E402 | 0.1666E+02 1.299
6.0 0.1350E402 | 0.1722E+02 1.276 0.1297E402 | 0.1662E+02 1.281
7.0 0.1308E402 | 0.1656E+02 1.265 0.1288E402 | 0.1630E+02 1.265
8.0 0.1264E402 | 0.1586E+02 1.254 0.1268E402 | 0.1585E+02 1.250
9.0 0.1221E4+02 | 0.1527E+02 1.250 0.1242E4+02 | 0.1545E+02 1.244
10.0 0.1175E402 | 0.1462E+02 1.243 0.1209E4-02 | 0.1494E+02 1.235
11.0 0.1139E4+02 | 0.1415E4+02 1.242 0.1180E+02 | 0.1455E4+02 1.233
12.0 0.1105E4-02 | 0.1368E+02 1.238 0.1151E+02 | 0.1414E+02 1.228
13.0 0.1070E402 | 0.1323E+02 1.236 0.1119E4-02 | 0.1373E+02 1.226
14.0 0.1036E4+02 | 0.1280E402 1.235 0.1086E402 | 0.1331E+02 1.225
15.0 0.1004E+02 | 0.1238E402 1.233 0.1054E+02 | 0.1290E402 1.223
16.0 0.9729E4+01 | 0.1199E402 1.232 0.1022E+02 | 0.1250E402 1.222
17.0 0.9433E401 | 0.1161E+02 1.231 0.9914E401 | 0.1211E+02 1.221
18.0 0.9149E401 | 0.1125E+02 1.229 0.9611E401 | 0.1172E+02 1.218
19.0 0.8869E+01 | 0.1090E+02 1.228 0.9306E+01 | 0.1133E402 1.218
20.0 0.8602E401 | 0.1056E+02 1.227 0.9011E401 | 0.1095E+02 1.215
25.0 0.7461E4+01 | 0.9168E401 1.228 0.7844E+01 | 0.9564E+01 1.219
30.0 0.6505E+401 | 0.8006E+01 1.230 0.6797TE+01 | 0.8292E+01 1.220
35.0 0.5701E4+01 | 0.7037E+01 1.234 0.5976E+01 | 0.7328 E401 1.226
40.0 0.5039E401 | 0.6249E+01 1.240 0.5262E+401 | 0.6481E+01 1.231
45.0 0.4492E401 | 0.5593E401 1.245 0.4704E401 | 0.5830E+01 1.239
50.0 0.4079E+01 | 0.5099E+01 1.250 0.4261E4+01 | 0.5305E401 1.245
55.0 0.3807E+01 | 0.4787E+01 1.257 0.3972E401 | 0.4978E+01 1.253
60.0 0.3704E401 | 0.4685E401 1.264 0.3862E+01 | 0.4872E+01 1.261
65.0 0.3868E+01 | 0.4918E+01 1.271 0.4027E+01 | 0.5114E+01 1.269
70.0 0.4518E401 | 0.5779E+01 1.279 0.4693E401 | 0.5998E+01 1.278
75.0 0.6259E+01 | 0.8050E+01 1.286 0.6487E+01 | 0.8349E401 1.286
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Table 3. Inclusive cross section for Drell-Yan pairs in p-p collision

do

Qyd il [nb GeV?]
/s = 5500 GeV
M [GeV] Born Born+LO Kin Born Born+LO Kin
MRS D/ MRS D-' | MRS D-/ MRS D0’ MRS D0’ MRS D0’
3.0 0.7467E402 | 0.9717E+02 1.301 0.1681E402 | 0.2441E+02 1.452
4.0 0.7381E402 | 0.9077TE+02 1.229 0.2192E402 | 0.2989E+02 1.363
5.0 0.7200E4-02 | 0.8650E+02 1.201 0.2586E+02 | 0.3361E+02 1.299
6.0 0.6993E402 | 0.8427E+02 1.205 0.2885E4-02 | 0.3693E+02 1.279
7.0 0.675TE+02 | 0.7984E+02 1.181 0.3102E4-02 | 0.3868E+02 1.247
8.0 0.6522E402 | 0.7636E+02 1.170 0.3269E4-02 | 0.4002E+02 1.224
9.0 0.6305E4-02 | 0.7415E+02 1.176 0.3402E4-02 | 0.4150E+02 1.219
10.0 0.6074E402 | 0.7109E+02 1.170 0.3488E+02 | 0.4216E4+02 1.208
11.0 0.5866E402 | 0.6842E+02 1.166 0.3558E402 | 0.4273E+02 1.201
12.0 0.5695E402 | 0.6677TE+02 1.172 0.3604E402 | 0.4329E+02 1.201
13.0 0.5529E402 | 0.6442E+02 1.165 0.3634E402 | 0.4328E+02 1.190
14.0 0.5364E402 | 0.6262E+02 1.167 0.3646E402 | 0.4339E+02 1.190
15.0 0.5211E402 | 0.6055E+02 1.161 0.3653E402 | 0.4316E+02 1.181
16.0 0.5070E+02 | 0.5904E+02 1.164 0.3655E402 | 0.4316E+02 1.180
17.0 0.4939E402 | 0.5733E+02 1.160 0.3654E402 | 0.4294E+02 1.175
18.0 0.4816E4-02 | 0.5575E+02 1.157 0.3648E402 | 0.4269E+02 1.170
19.0 0.4691E402 | 0.5421E+02 1.155 0.3631E402 | 0.4236E+02 1.166
20.0 0.4575E402 | 0.5285E+02 1.155 0.3613E4-02 | 0.4209E+02 1.165
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Table 4. Inclusive cross section for Drell-Yan pairs in p-p collision

d
M3 d”M [nb GeV?]
Y

d
Vs = 14000 GeV

M [GeV] Born Born+LO Kin Born Born+LO Kin
MRS D/ MRS D-' | MRS D-/ MRS D0’ MRS D0’ MRS D0’
3.0 0.167T1E4+03 | 0.2167E+03 1.297 0.1878E402 | 0.2814E+02 1.497
4.0 0.1659E+03 | 0.2073E+03 1.250 0.2623E402 | 0.3637E+02 1.386
5.0 0.1616E+03 | 0.1918E+03 1.187 0.3253E402 | 0.4260E+02 1.309
6.0 0.1564E+03 | 0.1797E+03 1.148 0.3774E402 | 0.4773E+02 1.264
7.0 0.1508E+03 | 0.1642E+03 1.088 0.4184E402 | 0.4911E+02 1.173
8.0 0.1454E+03 | 0.1632E+03 1.122 0.4522E+02 | 0.5374E+02 1.188
9.0 0.1405E+03 | 0.1612E+03 1.147 0.4806E+02 | 0.5802E+02 1.207
10.0 0.1355E+03 | 0.1534E+03 1.132 0.5013E4-02 | 0.5998E+02 1.196
11.0 0.1309E403 | 0.1459E+03 1.114 0.5191E402 | 0.5996E+02 1.155
12.0 0.1269E403 | 0.1468E+03 1.156 0.5341E402 | 0.6409E+02 1.200
13.0 0.1231E403 | 0.1406 E+03 1.142 0.5459E402 | 0.6431E+02 1.178
14.0 0.1193E+03 | 0.1374E+03 1.151 0.5543E402 | 0.6556E+02 1.182
15.0 0.1160E+03 | 0.1333E+403 1.149 0.5609E402 | 0.6611E+02 1.178
16.0 0.1129E403 | 0.1295E+03 1.147 0.5665E402 | 0.6650E+02 1.173
17.0 0.1100E403 | 0.1249E+03 1.136 0.5713E402 | 0.6639E+02 1.162
18.0 0.1072E4-03 | 0.1209E+03 1.127 0.5750E4+02 | 0.6622E+02 1.151
19.0 0.1045E4-03 | 0.1186E+03 1.134 0.5765E+02 | 0.6661E+02 1.155
20.0 0.1019E403 | 0.1146E+03 1.125 0.5776E4+02 | 0.6618E+02 1.145
25.0 0.9120E4-02 | 0.1037E+03 1.137 0.5786E402 | 0.6657TE+02 1.150
30.0 0.8283E+02 | 0.9371E+02 1.131 0.5698E402 | 0.6505E+02 1.141
35.0 0.7664E402 | 0.8638E+02 1.127 0.5601E402 | 0.6346E+02 1.133
40.0 0.7179E402 | 0.8131E+02 1.132 0.5510E402 | 0.6264E+02 1.136
45.0 0.6848E402 | 0.7750E+02 1.131 0.5479E402 | 0.6214E+02 1.134
50.0 0.6693E402 | 0.7538E+02 1.126 0.5550E4-02 | 0.6257E+02 1.127
55.0 0.6752E402 | 0.7622E+02 1.128 0.577T4E4+02 | 0.6518E+02 1.128
60.0 0.7175E402 | 0.8103E+02 1.129 0.6286E402 | 0.7095E+02 1.128
65.0 0.8248E402 | 0.9345E+02 1.133 0.7378E402 | 0.8349E+02 1.131
70.0 0.1068E403 | 0.1207E+03 1.131 0.9728E402 | 0.1098E+03 1.128
75.0 0.1648E+03 | 0.1864E+03 1.131 0.1526E+03 | 0.1722E+03 1.128
80.0 0.3334E+03 | 0.3776E+03 1.132 0.3136E+03 | 0.3541E+03 1.129
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Table 5. Angular distribution factors for Drell-Yan pairs in p-p collision

/s =200 GeV, M =4 GeV

pr [GeV] | do/dM?dpp?dy Ag Aq do/dM?dpr3dy Ag Aq
[GeV= 6]y =0 [GeV~= 6]y =3
0.2 0.367D-06 0.0072 | 0.0000 0.170D-06 0.0062 | 0.0140
0.4 0.772D-07 0.0296 | 0.0000 0.297D-07 0.0268 | 0.0385
0.6 0.302D-07 0.0653 | 0.0000 0.995D-08 0.0607 | 0.0708
0.8 0.153D-07 0.1108 | 0.0000 0.435D-08 0.1038 | 0.1082
1.0 0.888D-08 0.1623 | 0.0000 0.219D-08 0.1521 | 0.1477
1.2 0.563D-08 0.2166 | 0.0000 0.121D-08 0.2017 | 0.1871
1.4 0.380D-08 0.2713 | 0.0000 0.710D-09 0.2502 | 0.2245
1.6 0.267D-08 0.3247 | 0.0000 0.434D-09 0.2960 | 0.2590
1.8 0.194D-08 0.3757 | 0.0000 0.273D-09 0.3384 | 0.2900
2.0 0.144D-08 0.4236 | 0.0000 0.175D-09 0.3770 | 0.3173
2.2 0.110D-08 0.4683 | 0.0000 0.114D-09 0.4121 | 0.3410
2.4 0.846D-09 0.5095 | 0.0000 0.751D-10 0.4438 | 0.3613
2.6 0.663D-09 0.5473 | 0.0000 0.498D-10 0.4726 | 0.3786
2.8 0.525D-09 0.5820 | 0.0000 0.333D-10 0.4987 | 0.3930
3.0 0.420D-09 0.6136 | 0.0000 0.223D-10 0.5225 | 0.4050
3.2 0.339D-09 0.6425 | 0.0000 0.149D-10 0.5444 | 0.4148
3.4 0.276D-09 0.6688 | 0.0000 0.100D-10 0.5644 | 0.4227
3.6 0.226D-09 0.6928 | 0.0000 0.671D-11 0.5830 | 0.4289
3.8 0.187D-09 0.7148 | 0.0000 0.448D-11 0.6002 | 0.4337
4.0 0.155D-09 0.7347 | 0.0000 0.299D-11 0.6162 | 0.4372
4.2 0.129D-09 0.7530 | 0.0000 0.198D-11 0.6311 | 0.4397
4.4 0.108D-09 0.7696 | 0.0000 0.131D-11 0.6452 | 0.4412
4.6 0.915D-10 0.7849 | 0.0000 0.860D-12 0.6584 | 0.4418
4.8 0.775D-10 0.7988 | 0.0000 0.560D-12 0.6708 | 0.4418
5.0 0.659D-10 0.8117 | 0.0000 0.362D-12 0.6826 | 0.4411
5.2 0.563D-10 0.8235 | 0.0000 0.231D-12 0.6938 | 0.4399
5.4 0.483D-10 0.8343 | 0.0000 0.146D-12 0.7044 | 0.4382
5.6 0.416D-10 0.8442 | 0.0000 0.910D-13 0.7145 | 0.4361
5.8 0.359D-10 0.8534 | 0.0000 0.558D-13 0.7241 | 0.4337
6.0 0.312D-10 0.8618 | 0.0000 0.336D-13 0.7333 | 0.4309
6.2 0.271D-10 0.8696 | 0.0000 0.198D-13 0.7421 | 0.4279
6.4 0.236D-10 0.8768 | 0.0000 0.114D-13 0.7505 | 0.4246
6.6 0.207D-10 0.8836 | 0.0000 0.641D-14 0.7585 | 0.4212
6.8 0.181D-10 0.8898 | 0.0000 0.348D-14 0.7662 | 0.4177
7.0 0.159D-10 0.8955 | 0.0000 0.181D-14 0.7736 | 0.4139
7.2 0.141D-10 0.9009 | 0.0000 0.896D-15 0.7808 | 0.4099
7.4 0.124D-10 0.9058 | 0.0000 0.416D-15 0.7879 | 0.4058
7.6 0.110D-10 0.9105 | 0.0000 0.180D-15 0.7948 | 0.4014
7.8 0.977D-11 0.9149 | 0.0000 0.722D-16 0.8013 | 0.3970
8.0 0.869D-11 0.9189 | 0.0000 0.268D-16 0.8073 | 0.3929
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Table 6. Angular distribution factors for Drell-Yan pairs in p-p collision
/s = 5500 GeV, M =4 GeV

pr [GeV] | do/dM?dpp?dy Ag Aq do/dM?dpridy Ag Aq
[GeV~= 6]y =0 [GeV~= 6]y =3
0.2 0.389D-05 0.0085 | 0.0000 0.545D-05 0.0081 | -0.0071
0.4 0.844D-06 0.0341 | 0.0000 0.118D-05 0.0329 | -0.0154
0.6 0.337D-06 0.0736 | 0.0000 0.471D-06 0.0714 | -0.0238
0.8 0.173D-06 0.1226 | 0.0000 0.241D-06 0.1194 | -0.0317
1.0 0.101D-06 0.1768 | 0.0000 0.141D-06 0.1730 | -0.0387
1.2 0.647D-07 0.2328 | 0.0000 0.905D-07 0.2287 | -0.0448
1.4 0.438D-07 0.2882 | 0.0000 0.614D-07 0.2841 | -0.0498
1.6 0.309D-07 0.3415 | 0.0000 0.434D-07 0.3377 | -0.0538
1.8 0.225D-07 0.3916 | 0.0000 0.317D-07 0.3883 | -0.0569
2.0 0.168D-07 0.4383 | 0.0000 0.237D-07 0.4357 | -0.0592
2.2 0.128D-07 0.4813 | 0.0000 0.180D-07 0.4795 | -0.0607
2.4 0.990D-08 0.5207 | 0.0000 0.140D-07 0.5198 | -0.0615
2.6 0.776D-08 0.5566 | 0.0000 0.110D-07 0.5567 | -0.0618
2.8 0.615D-08 0.5895 | 0.0000 0.872D-08 0.5903 | -0.0616
3.0 0.493D-08 0.6193 | 0.0000 0.700D-08 0.6210 | -0.0611
3.2 0.398D-08 0.6464 | 0.0000 0.567D-08 0.6489 | -0.0602
3.4 0.325D-08 0.6712 | 0.0000 0.463D-08 0.6743 | -0.0591
3.6 0.267D-08 0.6936 | 0.0000 0.381D-08 0.6975 | -0.0577
3.8 0.220D-08 0.7142 | 0.0000 0.315D-08 0.7186 | -0.0562
4.0 0.183D-08 0.7329 | 0.0000 0.262D-08 0.7378 | -0.0546
4.2 0.153D-08 0.7500 | 0.0000 0.220D-08 0.7554 | -0.0529
4.4 0.129D-08 0.7657 | 0.0000 0.185D-08 0.7714 | -0.0512
4.6 0.109D-08 0.7801 | 0.0000 0.157D-08 0.7861 | -0.0494
4.8 0.928D-09 0.7932 | 0.0000 0.133D-08 0.7996 | -0.0476
5.0 0.793D-09 0.8054 | 0.0000 0.114D-08 0.8120 | -0.0457
5.2 0.680D-09 0.8166 | 0.0000 0.977D-09 0.8234 | -0.0439
5.4 0.586D-09 0.8268 | 0.0000 0.841D-09 0.8338 | -0.0421
5.6 0.506D-09 0.8363 | 0.0000 0.727D-09 0.8434 | -0.0403
5.8 0.439D-09 0.8450 | 0.0000 0.631D-09 0.8523 | -0.0385
6.0 0.383D-09 0.8532 | 0.0000 0.550D-09 0.8605 | -0.0368
6.2 0.335D-09 0.8608 | 0.0000 0.480D-09 0.8681 | -0.0351
6.4 0.293D-09 0.8677 | 0.0000 0.421D-09 0.8752 | -0.0334
6.6 0.258D-09 0.8743 | 0.0000 0.370D-09 0.8817 | -0.0318
6.8 0.228D-09 0.8803 | 0.0000 0.326D-09 0.8878 | -0.0302
7.0 0.202D-09 0.8860 | 0.0000 0.288D-09 0.8934 | -0.0286
7.2 0.179D-09 0.8913 | 0.0000 0.256D-09 0.8987 | -0.0271
7.4 0.159D-09 0.8962 | 0.0000 0.227D-09 0.9036 | -0.0256
7.6 0.142D-09 0.9008 | 0.0000 0.203D-09 0.9082 | -0.0242
7.8 0.127D-09 0.9052 | 0.0000 0.181D-09 0.9124 | -0.0228
8.0 0.114D-09 0.9092 | 0.0000 0.162D-09 0.9165 | -0.0214
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