
Analogue and Digital Pilot Testing for the PHENIX pixel

detector

R.Ichimiya

February 4, 2009

Abstract

In order to rule out fault Digital and Analogue Pilot chips for the SPIRO board before its
assembling, their inspection were made. For Analogue Pilot chips, ADC output voltages were
measured by a DMM and also acquired read-backed voltage values by on-chip DAC. We confirmed
they agrees in good precision. For Digital Pilot chips, we have tested them with using a half-ladder
and an prototype SPIRO board with QFP IC sockets (SPIRO1). By this inspection, we have 178
good Digital Pilot and 180 good Analogue Pilot. This is enough value for SPIRO board fabrication
for the PHENIX experiment.

1 ASIC description

1.1 Analogue Pilot ASIC Specification

The LHCBPIX1 chip or Pixel readout chip, incorporates 42 8-bit internal DACs which provide a variety
of voltage and current biases to the analogue and digital circuitly within the chip. [1] All of these DACs
are configurable via the chips JTAG interface and must be biased externally with two precise and stable
voltage references, which are referred to as DAC REF VDD and DAC REF MID. In addition, two more
pairs of external reference voltages are needed to provide full functionality to the Pixel chip. The second
pair of reference voltages, GTL REFa and GTL REF, are necessary to set the thresholds for the GTL
logic I/O pads on the Pixel chip; two separate references are required such that one can be supplied
to the analogue and the other to the digital section of the chip. For test purposes, the Pixel chip is
capable of injecting a small test pulse into the pre-amplifier of the analogue front-end for each of its
8192 pixel cells. The test pulse is generated by a voltage step applied across an internal capacitor. The
size of the voltage step is controlled by the final pair of external reference voltages, analogue test hi and
analogue test lo.

For the 8 pixel readout chips on a half-ladder connected to each of the SPIRO board, the external
references are supplied by 6 8-bit DACs located on 2 pieces of CERN developed ASIC called the Analogue
Pilot chip. The Analogue Pilot is a mixed-mode IC developed with Hardening By Design (HBD)
techniques to improve radiation tolerance. The chip contains, as shown in Figure 1, the following
circuitly blocks:

• 6 8-bit DACs to provide the reference voltages mentioned above for the Pixel chip

• A 16-input analogue multiplexer followed by 10-bit JTAG controllable ADC

• A band-gap reference which provides a reference voltage to the other on-chip reference circuits,
independent of temperature and power supply variations.

• A reference circuit which provides the necessary references to the 6 DACs.

• A reference circuit which provides the necessary references to the on-chip ADC.

1

Figure 1: Block Diagram of the Analogue Pilot

1.2 Digital Pilot ASIC Specification

The core component of the SPIRO board is the Digital Pilot ASIC. Each of the two pixel readout chip [7]
pairs presents 256 × 2 sequential words of data to a 32-bit bus synchronously at a beam collision clock
frequency of 10 MHz as shown in Fig. 2. To meet the readout timing requirements of PHENIX, four
readout chips are read out in parallel. To optimize the readout speed and space factor, PHENIX Digital
Pilot ASIC [6] with twice the number of input channels was developed using the same design rules and
radiation-tolerant technology as the original ALICE Digital Pilot ASIC [10]. The PHENIX Digital Pilot
ASIC with 2 × 32 inputs can simultaneously read two 32-bit words from two pairs of pixel readout
chips. Each 32-bit input handles the output from a pair of chips, which represents 512 sequential words
of pixel data. Thus, two Digital Pilot ASICs are required to fully readout a pixel half-ladder, meeting
the PHENIX DAQ readout timing requirements.

Figure 2: Pixel detector readout scheme.

The data transmission from a readout chip to a pilot chip is performed as follows. A bus carries 2
× 32-bit data at a frequency of 10 MHz to a Digital Pilot chip. The Digital Pilot chip is designed to
produce an output at 40 MHz. This allows four 25 ns transmission cycles to be available before the
next data word from the readout chips arrives. The first two clock cycles are referred to as “cycle-0”
and the last two clock cycles as “cycle-1”. If no pixel data readout is performed, only status data (slot-
0) is transmitted in cycle-0. In this case, cycle-1 contains (empty) data. During pixel data readout,

2

after transmission of status data (slot-0) in cycle-0, event header information (slot-1a) is transmitted
in cycle-1. This initial transmission is followed by the repeated transmissions of (slot-0) and (slot-1b)
containing the pixel hit information. The principle of data transmission is illustrated in Fig. 3.

Figure 3: Data transmission from pixel detector.

To summarize, the Digital Pilot ASIC performs the following functionalities:

• Decord serial commands

• Configure Digital Pilot itself, pixel readout chips, Analogue Pilot and GOL SerDes ASIC via
JTAG.

• Send control signals to the half-ladder.

• Multiplex data from the half-ladder and send to the FEM via optical links.

2 Analogue Pilot Chip Testing

2.1 Test Setup

To test all 190 Digital Pilot ASICs and 204 Analogue Pilot ASICs, two inspection boards were fabricated
to test each ASICs. They equipped with a QFP IC socket, control/readout ports and monitoring ports.

Figure 4: Pilot ASIC Inspection Setup.

The test inspection setup basically has the same configuration as the SPIRO board. Serial commands
were transmitted from an external Pulse Pattern Generator module (PPG) and fed to the Digital Pilot
ASIC on the Digital Pilot Inspection board. To control and read back data from the Analogue Pilot,

3

D
-P

ilo
t
Te

st
 b

o
a

rd
TO

M
 (

5
0

)

E
X

4 E
X

6

P
P
G

(9
0

)

E
X

1
6

A
-P

ilo
t
Te

st
 b

o
a

rd

E
X

5

E
X

4

N
O

1

K
e

it
h

le
y

2
0

0
0

 +
1

0
c

h
 s

c
a

n
n

e
r
c

a
rd

C
LK

C
LK

d
e

la
y

d
e

la
y

C
lo

c
k

F
a

n
-o

u
t

A
g

ile
n

t
8

1
1

0
0

A
 (

c
lo

c
k

so
u

rc
e

)

P
h

ili
p

s
7

2
8

TT
L/

N
IM

5
0

TT
L

N
IM

P
h

ili
p

s
7

4
0

F
a

n
-o

u
t P

P
G

 c
lk

TO
M

 c
lk

c
lk

TR
IG

 I
N

c
lk

TR
IG

 I
N

c
lk

TR
IG

 I
N

IN
TR

O
U

T

C
o

n
n

e
c

ti
o

n
 T

a
b

le

E
X

5

p

_
re

se
t_

g
o

l

E
X

4

#
3

3

E
X

5

p

_
tc

k_
g

o
l

 E
X

4

#
3

1

E
X

5

p

_
tm

s_
g

o
l

E
X

4

#
2

9

E
X

5

p

_
td

o
_
g

o
l

E
X

4

#
2

7

E
X

1
4

p

_
td

o
_
g

o
l

E
X

5

#
3

1

D
-P

ilo
t
b

o
a

rd
D

-P
ilo

t
b

o
a

rd
A

-P
ilo

t
b

o
a

rd

*
In

 a
d

d
it

io
n

,
p

in
s

‘G
N

D
’ a

n
d

 ‘
p

_
o

p
t_

In
t’

o
f
E
X

1
4

 a
t
D

-P
ilo

t
b

o
a

rd
 s

h
o

u
ld

 b
e

 s
h

o
rt

e
d

.

F
o

llo
w

in
g

 c
o

n
n

e
c

to
r
p

in
s

p
a

ir
s

a
re

c

o
n

n
e

c
te

d
 w

it
h
 f

ly
in

g
 w

ir
e

s.

JTAG signal lines and a reset signal line were connected between the Digital Pilot Inspection Board and
the Analogue Pilot Inspection Board with fling wires as shown in Fig. 4.

Analogue Pilot DAC output voltages were measured by a Keithley 2000 Digital Multi-Meter (DMM)
with a 10 channel switch-box. Analogue Pilot ADC data were stored in its registers and read out by
Digital Pilot ASIC via the JTAG path. The readout data from the Digital Pilot ASIC were read out
by a FIFO module. The whole system i.e., the PPG module, the FIFO module and the Keithley 2000
DMM, was controlled by a Linux computer and all the readout data were recorded.

2.1.1 Test Board

Analogue Pilot Test board is designed for inspect analogue pilot ASICs easily. It equips JTAG and Reset
I/O (TTL), analogue output and input terminals. I’ve made modification on this board to connect all
analogue outputs to the scanner card for Keithley 2000 Digital Multimeter (DMM).

2.1.2 VME Instruments

Serial commands for Digital Pilot are fed from a VME Pulse Pettern Generator (PPG). Output data
from Digital Pilot are read out by a VME FIFO module. Their common start signal are fed from a
VME Interrupt Register module. These three modules are housed in VME crate and operated by SBS
Bit3 VME-PCI interface board. Using Bit3 interface board, user can operate VME system from a PC
running Linux OS.

2.1.3 DMM

We used Keithley model 2000 6-1/2 digit Digital Multimeter to read out the output of analogue pilot
ASIC. This model can use 10 channel scanner cards. It also equipps IEEE-488 (GPIB) and RS-232
interface. We used RS-232 interface to control and take data.

2.1.4 DAQ Software

The DAQ system was centrally controlled by a PC running Object Oriented (OO) software written in
C++. Class structure was designed to represent the test setup.

To run the DAQ software, login the dp01 (172.27.217.16 in RIKEN Radiation Lab internal network)
and hit the following command:

% cd /home/ryo/DPilot
% ./AP_DAC_ADC_Auto <Analogue Pilot Chip number>

Where <Analogue Pilot Chip number> is actually a number of Analogue Pilot ASIC; 1, 2, 3... Taken
data will be stored in AP data/AP DAC ADC Results XX.csv (XX: chip number).

In this directory, there are all software source codes including Makefile. To recompile all software,
just run make clean and make all.

main() of AP DAC ADC Auto.cc is start point of the software. Following is consised code:

int main(int argc, char *argv[])
{
// initialization and file I/O code are described

// **** Initialize Keithley2000 Multimeter ***
keithley_init();

// **** Initialize VME board object ****
PPG50Box* ppg50box0 = new PPG50Box(PPG0_ADDR);
TOMBox* tombox0 = new TOMBox(TOM0_ADDR);
AtlasIntrRegister* intr = new AtlasIntrRegister(INTR_ADDR);

// ***** Analog Pilot DAC Loop ***** <= DAC value will be set in each loop
char* rddata_str;

4

double rddata[10][8];
double JTAG_ADC_Out[10][17];
usleep(1000000); // wait 1sec before loop (for Keithley 2000)
for (int iDAC=0; iDAC<=9; iDAC++) {

// **** Keithley 2000 DAQ ****
rddata_str = keithley_read();

// taken data formatting and recording...

// ***** TOM Initialize **** (FIFO module)
tombox0->SetLength(255);
tombox0->TomReset();
tombox0->ReadCSR();

// ***** PPG Initialize *****
ppg50box0->Initialize(0, //trigger mode 1: repeat, 0:single

1, //clock mode 1: external, 0: internal
255 //length (1+length)*256 [words]

);

// ***** INTR Initialize *****
intr->write(AtlasIntrRegister::ADDR_CSR1, 0x3);
intr->write(AtlasIntrRegister::ADDR_CSR2, 0x3);
intr->level(atoul("0000_0000")); // be sure to be initial level LOW

// ***** generate PPG data ***** (Serial commands for Digital Pilot)
ppg50box0->OutputCommand(DP::RESET, "DP::RESET"); // Deserializer reset
ppg50box0->Fill_IDLE_Command(128); // Fill IDLE for let D-Pilot lock.
ppg50box0->OutputCommand(DP::RESET_GBL, "DP::RESET_GBL"); // DP’s logic reset

ppg50box0->Jtag_Go_RunTestIdle(); // Go to JTAG Run-Test/Idle state

// Write Pilot2003 configuration registers <48:0>*3
ppg50box0->Jtag_SIR(DP::CREG_RW+AP::BYPASS); // DP:CREG_RW+AP:BYPASS
// Prepare 1 set of Pilot2003 configuration registers <48:0>
std::string RO_l2_rd_ptr_in = "00"; //RO register
std::string RO_l2_wr_ptr_in = "00"; //RO register
//skip.....
std::string DP_CREG_A = RO_l2_rd_ptr_in + RO_l2_wr_ptr_in

+ RO_l2_y_fifo_in + RO_l2_n_fifo_in + RO_meb_bal_in
+ data_format_trig + enable_ce_sequ + skip_jtag_mode_jtag
+ hold_ro_jtag + strobe_cyc_number_jtag + event_number_jtag
+ mask_chip_jtag + seb_meb_jtag + wait_before_ro_jtag_jtag;

// Now we put 3 set of Pilot2003 configuration registers <48:0>*3, against SEU
std::string DP_CREG_ALL = DP_CREG_A + DP_CREG_A + DP_CREG_A;
ppg50box0->Jtag_SDR(DP_CREG_ALL+’0’); // DP::creg(rw)+AP:bypass

// To separate 2 JTAG Access
ppg50box0->Fill_IDLE_Command(10);

// IDCODE
ppg50box0->Jtag_SIR(DP::IDCODE+AP::IDCODE); // DP:IDCODE+AP:IDCODE
ppg50box0->Jtag_SIR(DP::IDCODE+AP::IDCODE); // DP:IDCODE+AP:IDCODE
ppg50box0->Jtag_SDR(std::string(32,’0’)+std::string(32,’0’));// read IDCODE(32)x2

5

// DAC Set
std::string ap_max = "11111111";
std::string ap_8th = "11100000";
std::string ap_7th = "11000000";
std::string ap_6th = "10100000";
std::string ap_5th = "10000000";
std::string ap_4th = "01100000";
std::string ap_3rd = "01000000";
std::string ap_2nd = "00100000";
std::string ap_min = "00000000";

if (iDAC==8 || iDAC==9) {
std::cout << "Analog Pilot DAC: Max" << std::endl;
ppg50box0->Jtag_SIR(DP::BYPASS+"01011"); // DP:IDCODE+AP:daq_reg_rw
ppg50box0->Jtag_SDR(’1’+ap_max+ap_max+ap_max+ap_max+ap_max+ap_max);

}
.....
}else{

std::cout << "Analog Pilot DAC: 1st" << std::endl;
ppg50box0->Jtag_SIR(DP::BYPASS+"01011"); // DP:IDCODE+AP:daq_reg_rw
ppg50box0->Jtag_SDR(’1’+ap_min+ap_min+ap_min+ap_min+ap_min+ap_min);

}
// DAC Setting Readback
ppg50box0->Jtag_SIR(DP::BYPASS+AP::DAC_RO); // DP:Bypass+AP:daq_reg_ro
ppg50box0->Jtag_SDR(’0’+std::string(48,’0’));
ppg50box0->Fill_IDLE_Command(1000); // Wait for 200us before conversion

// ADC Start Conversion
ppg50box0->Jtag_SIR(DP::BYPASS+AP::START_CONV); // DP:IDCODE+AP:START_CONV
ppg50box0->Fill_IDLE_Command(1000); // Wait for 200us (>=90us)

// ADC Read
ppg50box0->Jtag_SIR(DP::BYPASS+AP::ADC_READ); // DP:IDCODE+AP:ADC_READ
ppg50box0->Jtag_SDR(’0’+std::string(170, ’0’));// DP:Bypass + AP:10bitx17registers

// Finish PPG writing
std::cout << "PPG Status: wr_pos/length=" << ppg50box0->GetWrPos() << "/"

<< ppg50box0->GetLength() << std::endl;
ppg50box0->Fill_IDLE_Command(-1); // Fill IDLE Commands for remaining PPG lines
std::cout << "PPG Status: wr_pos/length=" << ppg50box0->GetWrPos() << "/"

<< ppg50box0->GetLength() << std::endl;

// PPG_RESET
ppg50box0->PpgReset();

// INTR_PULSE for PPG/TOM trigger
intr->pulse(atoul("1111_1111"));

// Data read by FIFO and JTAG decode
usleep(500000);
tombox0->ReadIn(65536);
tombox0->JTAG_Decode();
.....

} // end of Analog Pilot DAC Loop

6

// Output transposed (10-1)[iDAC]x8[ch] data (DAC-Output by Keithley)
.....

return 0;

}

2.1.5 RS-232 Control Software

The Keithley model 2000 DMM was controlled via RS-232 interface. The control commands for RS-232
interface is Standard Commands for Programmable Instrumentation (SCPI), which is comonly used for
IEEE-488 (GPIB). Therefore the difference between GPIB control software and RS-232 control software
are interface initialization and I/O command wrapper.

The source code for RS-232 control are keithley daq.cc and keithley daq.hh.
The initialization part of the software is keithley init(): In this function, SetupCommPort() is a

function to initialize the RS-232 interface and following codes are to output SCPI commands to initialize
and setup the Keithley 2000 DMM to scan voltages using 10channel scanner board. Argument of
WriteTty() is SCPI command. (note: SCPI command should ends in \n\r)

int keithley_init()
{

int errc;
int len;
/* Initialize own RS232C port */
if (SetUpCommPort()) {errc = 1; goto ERR;}

// KEITHLEY2000 Initialization
if (WriteTty("*RST\n\r") == -1) { errc = 9; goto ERR;}
if (WriteTty("*CLS\n\r") == -1) { errc = 9; goto ERR;}
if (WriteTty(":INIT:CONT OFF;:ABORT\n\r") == -1) { errc = 9; goto ERR;}
if (WriteTty(":SENS:FUNC ’VOLT:DC’\n\r") == -1) { errc = 9; goto ERR;}
if (WriteTty(":SYST:AZER:STAT ON\n\r") == -1) { errc = 9; goto ERR;}
if (WriteTty(":SENS:VOLT:DC:AVER:STAT OFF\n\r") == -1) { errc = 9; goto ERR;}
if (WriteTty(":SENS:VOLT:DC:NPLC 1\n\r") == -1) { errc = 9; goto ERR;}
//if (WriteTty(":SENS:VOLT:DC:RANG:10\n\r") == -1) { errc = 9; goto ERR;}
if (WriteTty(":SENS:VOLT:DC:RANG:AUTO ON\n\r") == -1) { errc = 9; goto ERR;}
if (WriteTty(":SENS:VOLT:DC:DIG 7\n\r") == -1) { errc = 9; goto ERR;}
//if (WriteTty(":FORM:ELEM READ, CHAN\n\r") == -1) { errc = 9; goto ERR;}
if (WriteTty(":FORM:ELEM READ\n\r") == -1) { errc = 9; goto ERR;}
if (WriteTty(":TRIG:COUN 1\n\r") == -1) { errc = 9; goto ERR;}
if (WriteTty(":SAMP:COUN 8\n\r") == -1) { errc = 9; goto ERR;}
if (WriteTty(":TRIG:SOUR IMM\n\r")== -1) { errc = 9; goto ERR;}
if (WriteTty(":ROUT:SCAN:INT (@1,2,3,4,5,6,7,8)\n\r") == -1) { errc = 9; goto ERR;}
if (WriteTty(":ROUT:SCAN:LSEL INT\n\r") == -1) { errc = 9; goto ERR;}

return(0);

// Error handling
ERR:
switch (errc){

case 1: printf("Malfunction on com\n"); break;
case 2: printf("Unidex not responding\n"); break;
case 3: printf("Absolute mode not active\n"); break;
case 5: printf("Read position incomplete\n"); break;
case 6: printf("Read status byte incomplete\n"); break;
case 9: printf("Comm err when it write\n"); break;
case 10: printf("Comm err when it read\n"); break;

7

default: printf("UNresolved error %x\n",errc); break;
}
return(8);

}

SetUpCommPort() and its subfunctions are:

int SetUpCommPort()
{

iCommPort = serial_open("/dev/ttyS0");
if (iCommPort > 0) return (0);

else return (-1);
}

extern int serial_open(char *portname)
{
int fd;
if ((fd = open(portname,O_RDWR|O_EXCL)) > 0) {
if (serial_configure(fd)) return (fd);

}
return(-1);

}

#define clear(var,mask) var &= (~(mask))
#define set(var,mask) var |= (mask)
#define COMSPEED B9600
#define DEFAULT_TIMEOUT 5 /* 1/10 seconds */
boolean serial_configure(int fd)
{
struct termios term;
static int32 speedkey = COMSPEED;

if (tcgetattr(fd,&term)!=0){
perror("serial_configure(), getting attributes");
return FALSE;

}
cfsetispeed(&term,speedkey); /* Speed */
cfsetospeed(&term,speedkey);
clear(term.c_iflag, /* Input modes */

IGNBRK|BRKINT|IGNPAR|INPCK|ISTRIP|ICRNL|INLCR|IXON|IXOFF);
set(term.c_iflag,0);
clear(term.c_oflag, OPOST); /* Output modes */
set(term.c_oflag,0);
clear(term.c_cflag,CSIZE|PARENB|CRTSCTS); /* Control modes */
set(term.c_cflag,CS8|CSTOPB);

/* Line modes */
clear(term.c_lflag,ISIG|ICANON|XCASE|ECHO|IEXTEN);
set(term.c_lflag,0); /* MIN and TIME */
term.c_cc[VMIN] = 0;
term.c_cc[VTIME] = DEFAULT_TIMEOUT;

if (tcsetattr(fd,TCSANOW,&term)!=0) {
perror("Oscillo: serial_configure(), setting attributes");
return FALSE;

}
return TRUE;

}

8

And WriteTty() is:

int WriteTty(char *message)
{

int iCharCnt;
int iBytesXferd;
iCharCnt = strlen(message);
iBytesXferd = write(iCommPort, message, iCharCnt);
if (iBytesXferd != iCharCnt) return -1;
else return 0;

}

After initialization complete with keithley init(), then read the data for one cycle with keithley read():

char* keithley_read()
{

int errc;
int len;

// Buffer control (clear, set length, etc.)
if (WriteTty(":TRAC:CLE\n\r") == -1) { errc = 9; goto ERR;}
if (WriteTty(":TRAC:POIN 8\n\r") == -1) { errc = 9; goto ERR;}
if (WriteTty(":TRAC:FEED SENS\n\r") == -1) { errc = 9; goto ERR;}
if (WriteTty(":TRAC:FEED:CONT NEXT\n\r") == -1) { errc = 9; goto ERR;}

// Trigger
if (WriteTty(":INIT\n\r") == -1) { errc = 9; goto ERR;}

// Request Data
if (WriteTty(":TRAC:DATA?\n\r") == -1) { errc = 9; goto ERR;}
sleep(1);

// Get Data
if ((len = ReadTty(str1)) == -1) { errc = 10; goto ERR;}
str1[len+1] = 0;

return str1;

// Error handling
ERR:
switch (errc){

case 1: printf("Malfunction on com\n"); break;
case 2: printf("Unidex not responding\n"); break;
case 3: printf("Absolute mode not active\n"); break;
case 5: printf("Read position incomplete\n"); break;
case 6: printf("Read status byte incomplete\n"); break;
case 9: printf("Comm err when it write\n"); break;
case 10: printf("Comm err when it read\n"); break;
default: printf("UNresolved error %x\n",errc); break;

}
return 0;

}

int ReadTty(char *str)
{

int iCharCount, i;

9

int iBytesXferd;

ioctl(iCommPort, FIONREAD , (caddr_t) &iBytesXferd);
iCharCount = read(iCommPort, strx, iBytesXferd);

if (iCharCount > 0){
for (i=0; i<iCharCount; i++) *(str+i) = *(strx+i);

} else return -1;
return iCharCount;

}

2.2 Result

The Analogue Pilot ASIC inspection consists of DAC output voltage measurement by the DMM, ADC
readout via the JTAG path and the JTAG registers read/write test.

Figure 5: DAC output voltages (left) and their readback by ADC (right).

Fig. 5 shows measured DAC output voltage for each DAC register value and the corresponding
readback voltage measured by the ADC for good chips. Readback voltages obtained by the ADC agree
well with the DAC output voltages. We rejected chips with out of range from either the normal output
voltages or the normal readback voltages. Some chips did not respond to DAC register setting. We
found that 180 good chips out of the 204 chips; there were 12 faulty chips and 12 chips with output
voltages that slightly exceeded the normal ranges or with pins that were deformed.

3 Digital Pilot Chip Testing

3.1 Test Setup

For Digital Pilot chips, which have a direct interface with the pixel ladder, their inspection was carried
out with using a half-ladder and an old prototype SPIRO board with a QFP IC socket. During this
test, trigger commands were sent to the Digital Pilot chips and the data were read out. We observed the
output data by scanning the threshold value of the pixel readout chip from high to low. If the Digital
Pilot functions well in the test, uniform random hit patterns should be displayed as the threshold
decreases. We then set test pulse mask patterns on the pixel chips, and we outputted test pulses and
trigger commands. This test is to check Digital Pilot’s test pulse output function and crosstalk in the
Digital Pilot chip.

3.2 Result

We found that there were 178 good chips out of the 190 chips.

10

4 Conculsion

In order to rule out fault Digital and Analogue Pilot chips for the SPIRO board before its assembling,
their inspection were made. For Analogue Pilot, ADC output voltages were measured by a DMM and
also read-backed by on-chip DAC. We confirmed they agrees in good precision. By this inspection,
we have 178 good Digital Pilot and 180 good Analogue Pilot. This is enough value for SPIRO board
fabrication for the PHENIX experiment.

References

[1] Ken Wyllie, CERN, Oct 2002, http://kwyllie.home.cern.ch/kwyllie/LHCBPIX1 doc/LHCBPIX1 manual.pdf

[2] Y. Akiba et al.: Proposal for a Silicon Vertex Tracker (VTX) for the PHENIX Experiment, BNL-
72204-2004, Physics Dept. BNL (2004).

[3] Y. Akiba et al.: RIKEN Accel. Prog. Rep. 41 XXX (2008).

[4] A. Taketani et al.: RIKEN Accel. Prog. Rep. 41 XXX (2008).

[5] E. J. Mannel et al.: RIKEN Accel. Prog. Rep. 41 XXX (2008).

[6] H. Kano et al.: RIKEN Accel. Prog. Rep. 38 237 (2005).

[7] K. Wyllie: ALICE1LHCB Preliminary Users Manual Version 3/7/01,
http://kwyllie.home.cern.ch/kwyllie/ALICE1LHCB.htm

[8] ALICE Experiment: http://aliceinfo.cern.ch/

[9] LHCb Experiment: http://lhcb.web.cern.ch/lhcb/

[10] A. Kluge: ALICE Silicon Pixel On Detector Pilot System OPS2003-The missing manual, ALICE-
INT-2004-030, CERN (2005).

11

vo_TESTLOW

0.00000000E+00

2.00000000E-01

4.00000000E-01

6.00000000E-01

8.00000000E-01

1.00000000E+00

1.20000000E+00

1.40000000E+00

Min
(code:00)

2nd
(code:20)

3rd
(code:40)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

vo_TESTHI

0.00000000E+00

2.00000000E-01

4.00000000E-01

6.00000000E-01

8.00000000E-01

1.00000000E+00

1.20000000E+00

1.40000000E+00

1.60000000E+00

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

vo_GTLD

0.00000000E+00

1.00000000E-01

2.00000000E-01

3.00000000E-01

4.00000000E-01

5.00000000E-01

6.00000000E-01

7.00000000E-01

8.00000000E-01

9.00000000E-01

1.00000000E+00

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

vo_DRHI

0.00000000E+00

5.00000000E-01

1.00000000E+00

1.50000000E+00

2.00000000E+00

2.50000000E+00

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

vo_GTLA

0.00000000E+00

2.00000000E-01

4.00000000E-01

6.00000000E-01

8.00000000E-01

1.00000000E+00

1.20000000E+00

1.40000000E+00

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

vo_DRMID

0.00000000E+00

2.00000000E-01

4.00000000E-01

6.00000000E-01

8.00000000E-01

1.00000000E+00

1.20000000E+00

1.40000000E+00

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

Vref0_out

5.04000000E-01

5.06000000E-01

5.08000000E-01

5.10000000E-01

5.12000000E-01

5.14000000E-01

5.16000000E-01

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

Vref1_out

1.88500000E+00

1.89000000E+00

1.89500000E+00

1.90000000E+00

1.90500000E+00

1.91000000E+00

1.91500000E+00

1.92000000E+00

1.92500000E+00

1.93000000E+00

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

T1 (ADC)

6.00000000E-01

6.50000000E-01

7.00000000E-01

7.50000000E-01

8.00000000E-01

8.50000000E-01

9.00000000E-01

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

T2 (ADC)

6.00000000E-01

6.50000000E-01

7.00000000E-01

7.50000000E-01

8.00000000E-01

8.50000000E-01

9.00000000E-01

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

vo_DRHI (ADC)

0.00000000E+00

5.00000000E-01

1.00000000E+00

1.50000000E+00

2.00000000E+00

2.50000000E+00

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

vo_DRMID (ADC)

0.00000000E+00

2.00000000E-01

4.00000000E-01

6.00000000E-01

8.00000000E-01

1.00000000E+00

1.20000000E+00

1.40000000E+00

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

vo_GTLA (ADC)

0.00000000E+00

2.00000000E-01

4.00000000E-01

6.00000000E-01

8.00000000E-01

1.00000000E+00

1.20000000E+00

1.40000000E+00

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

vo_GTLD (ADC)

0.00000000E+00

1.00000000E-01

2.00000000E-01

3.00000000E-01

4.00000000E-01

5.00000000E-01

6.00000000E-01

7.00000000E-01

8.00000000E-01

9.00000000E-01

1.00000000E+00

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

vo_TESTHI (ADC)

0.00000000E+00

2.00000000E-01

4.00000000E-01

6.00000000E-01

8.00000000E-01

1.00000000E+00

1.20000000E+00

1.40000000E+00

1.60000000E+00

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

vo_TESTLOW (ADC)

0.00000000E+00

2.00000000E-01

4.00000000E-01

6.00000000E-01

8.00000000E-01

1.00000000E+00

1.20000000E+00

1.40000000E+00

Min
(code:00)

2nd
(code:20)

3rd
(code:40)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

VDDDPC (ADC) -tied-

6.94000000E-01

6.96000000E-01

6.98000000E-01

7.00000000E-01

7.02000000E-01

7.04000000E-01

7.06000000E-01

7.08000000E-01

7.10000000E-01

7.12000000E-01

7.14000000E-01

7.16000000E-01

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

VDDAPC (ADC) -tied-

6.94000000E-01

6.96000000E-01

6.98000000E-01

7.00000000E-01

7.02000000E-01

7.04000000E-01

7.06000000E-01

7.08000000E-01

7.10000000E-01

7.12000000E-01

7.14000000E-01

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

AUX1 (ADC) -tied-

6.94000000E-01

6.96000000E-01

6.98000000E-01

7.00000000E-01

7.02000000E-01

7.04000000E-01

7.06000000E-01

7.08000000E-01

7.10000000E-01

7.12000000E-01

7.14000000E-01

7.16000000E-01

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

AUX2 (ADC) -tied-

6.94000000E-01

6.96000000E-01

6.98000000E-01

7.00000000E-01

7.02000000E-01

7.04000000E-01

7.06000000E-01

7.08000000E-01

7.10000000E-01

7.12000000E-01

7.14000000E-01

7.16000000E-01

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

AUX3 (ADC) -tied-

6.94000000E-01

6.96000000E-01

6.98000000E-01

7.00000000E-01

7.02000000E-01

7.04000000E-01

7.06000000E-01

7.08000000E-01

7.10000000E-01

7.12000000E-01

7.14000000E-01

7.16000000E-01

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

AUX4 (ADC) -tied-

6.94000000E-01

6.96000000E-01

6.98000000E-01

7.00000000E-01

7.02000000E-01

7.04000000E-01

7.06000000E-01

7.08000000E-01

7.10000000E-01

7.12000000E-01

7.14000000E-01

7.16000000E-01

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

DACPCV (ADC) -tied-

6.94000000E-01

6.96000000E-01

6.98000000E-01

7.00000000E-01

7.02000000E-01

7.04000000E-01

7.06000000E-01

7.08000000E-01

7.10000000E-01

7.12000000E-01

7.14000000E-01

7.16000000E-01

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

DACPCI_0 (ADC)

0.00000000E+00

5.00000000E-01

1.00000000E+00

1.50000000E+00

2.00000000E+00

2.50000000E+00

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

DACPCI_1 (ADC)

0.00000000E+00

5.00000000E-01

1.00000000E+00

1.50000000E+00

2.00000000E+00

2.50000000E+00

Min
(code:00)

2nd
(code:40)

3rd
(code:80)

4th
(code:60)

5th
(code:80)

6th
(code:a0)

7th
(code:c0)

8th
(code:e0)

Max
(code:ff)

	PilotTestConnection.pdf
	…y†[…W 1

