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∆t ∼ 1/α13/5

s Qs

The main puzzle at RHIC

Hydrodynamic models are 
successful if thermalization 
time is Δt≈0.5 fm

Naively, Δt~1/(nσ)~fm/αs

Why 
thermalization 

is so fast?

(Baier, Mueller, Son, Schiff)
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Possible solutions

Plasma instabilities (Mrowczynski; Arnold, Lenaghan, 
Moore).

Early isotropization may help explain v2 (Arnold, 
Lenaghan, Moore; Rebhan, Romatschke, Strickland).

No thermalization in pQCD (Kovchegov).

AdS/CFT ☺
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Macroscopic picture



Space-time structure of the HIC

Upon collision heavy 
ions experience very 
large deceleration.

Indeed, most of 
matter is produced in 
the transverse plane!

x+x-

z

t
Aμ

How large is acceleration? 

a ∼ eE/m ∼ Q2

s
/m

It depends only on the strength of the nuclear field 
⇒ Limiting fragmentation.
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ρ2
= z2

− t2 , η =
1

2
ln

t + z

t − z

Comoving frame

Comoving frame: x+x-

z

t
Aμ

ρ, η define the Rindler 
space in which 
accelerated particle is 
at rest. 

In the Rindler space x- and x+ are event horizons. 
Therefore, the produced particle can carry information only 
about conserved quantities. This is realized in the thermal  
distribution with T=a/(2π) (Unruh,Hawking). 
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P (m → M) = 2π|T (m → M)|2 ρ(M)

ρ(M) ≈ exp(4πb1/2M/61/2)

|T (m → M)|2 " exp(−2πM/a)

Hagedorn argument
Consider breakdown of a high energy hadron of mass m into a 
final hadronic state of mass M. Transition probability: 

In dual resonance model density of states is  

Transition amplitude:  

Probability conservation requires that ∑M P(M) = 1.  
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TH =
a

2π
=

61/2

4πb1/2

Limiting temperature

Therefore the string tension cannot accelerate particles 
beyond

acr =
√

3/2 b−1/2

which exactly corresponds to the Hagedorn temperature:

One needs stronger fields to get T>TH; e.g. CGC

In this macroscopic quasiclassical picture one can also study 
phase transitions. (Ohsaku)
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Microscopic picture



ks+ ! k+ xs− " x
−

ks− ! k
−

xs+ " x+

ks⊥ ! k⊥ xs⊥ " x⊥

τ = x+ = k+/k2
⊥ = ey/k⊥

Particle production at high 
energies

A

p,A,γ*

ra
pi

di
ty

time τ

Structure of the partonic cascade at high energies: 
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Background field method

A

p

ra
pi

di
ty

time

static field sources

Structure of the partonic cascade at high energies: 

“CGC”

Strength of the field is determined by the density of 
color charges in the transverse plane, i.e. Qs(y)
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Field configuration at low x (I)

(Chromo) Electric and Magnetic fields of a high energy 
hadron/nucleus are transverse (plane wave) and stable.

However, this is true only for a non-interacting 
hadron. Boundary conditions at the interaction point 
generate the longitudinal fields. 

Recall reflection of light in Electrodynamics!

A+(x−, x+, x⊥) = 0 , x+ ≤ x−

Kharzeev, KT hep-ph/051234; 
Kharzeev, Levin, KT hep-ph/0602063
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A(x, t) =

∫
d3x′

ρ(x′, t − |x − x
′|)

|x − x
′|

E‖ ! E⊥ " B⊥ ! B‖

Field configuration at low x (II)

Since Qs(y) increases down the cascade, the parton 
transverse size decreases. Therefore,

and A(x,t) does not depend on

x⊥ ! x
′
⊥

x⊥

s

Fries, Kapusta and Li argue that non-Abelian interactions can 
produce both longitudinal chromoelectric and chromomagnetic 
fields.   
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implications: see paper by Lappi & McLerran



Ecr =

m2c3

g!

Supercritical fields

The work done by the external chromo-electric field E 
accelerating a virtual qq pair apart by a Compton 
wavelength λc=h/mc is W=gEh/mc.

If W>2mc2 the pair becomes real.

In QED Ecr=1016 V/cm - beyond the current lab frontier.

In QCD g~1, m~Qs or Λ, thus Ecr~(1 GeV)2 : pair production 
is a common phenomenon. 
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(∂µ + ieAµ)2φ(x) + m2φ(x) = 0

φ±

p (x) =
1

(2π)3/2
√

2ω−

ei!p!rg±($p, t)

g̈(p, t) + ω2(t)g(p, t) = 0 , ω2(t) = p2
− 2epzAz + e2A2

z
+ m2

Vacuum rearrangement (I)

Example: charged scalar field in time dependent 
electromagnetic background

Eigenstates:

where

Note, that ϕin = ϕ(t→-∞) are different from ϕout =ϕ(t→+∞)
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[ai,in, a
†
j,in] = δij , ai,in|0〉in = 0

φ(x) =
∑

i

ai,outφ(x)ai,out(x) + a†
i,outφ

∗
i,out(x)

φ(x) =
∑

i

ai,inφ(x)ai,in(x) + a†
i,inφ

∗
i,in(x)

[ai,out, a
†
j,out] = δij , ai,out|0〉out = 0

ai,in =
∑

j

(αijaj,out + β∗
jia

†
j,out)

〈0|ai,ina
†
i,in|0〉in = 0

〈0|ai,ina
†
i,in|0〉out =

∑

j

|βij|
2

Vacuum rearrangement (II)
Second quantization

where

Equivalently

Unitarity implies 

Therefore, even if
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DµDνgµνφ(x) + m2φ(x) = 0

φωlm(x) = r−1Rωl(r)Ylm(θ, ϕ) exp(±iωt)

Rωl(r) ≈

{

exp(iωr∗) + αωl exp(−iωr∗) , r∗ → −∞

βωl exp(iωr∗) , r∗ → +∞

r∗ = r + rg ln(r/rg − 1)

|βωl|
2 ∝ exp(−2πω/κ)

κ = 1/4GM

Particle production by black hole

The same problem of quantization in external field

In Schwartzschild metric 

Black hole emission rate Hawking, 75

where the surface gravity is
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Propagator in external field
Pair production rate = imaginary part of the propagator

WKB 
approximation 
is quite useful 
for calculating 
tunneling 
probabilities.

see T. Lappi’s numerical solution of Dirac equation in 
external field.
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ε± = ±
√

p2(z) + m2 + eEz

za,b = (ε ± m)/gE

Γ = exp{−
∫

zb

za
dz |p(z)|} = exp{−πm2

⊥
/gE}

WKB approximation

In the pair production process electron’s energy 
changes from ε- to ε+ where  

Pair production rate Γ≈e-2ImS. Imaginary part of action 
ImS can be found by integrating phase over states 
with imaginary momentum: 

where the turning points of the linear potential are 
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((−∂µ − igAµ)2
± 2eEz) W± = 0

−2∂+S (∂−S − g A+(x−)) + p2
⊥ + 2gσ Ez = 0 ; x+ > x−

Canonical approach 

Gauge boson propagator in SU(2) can be found from 
equation of motion

In the quasiclassical approximation we seek solution in 
form W=exp(-iS-ip⋅x) such that S’’<<(S’)2

Introduce canonical momenta Pμ=-∂μS+gAμ. Then S can be 
found along the classical particle trajectories. 
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x− =
p2
⊥

2

∫
dx+

(p+ + gA+(x+))2

S = p−x+ +

∫
dx+

p2
⊥

p+ + gA+(x+)
−

∫
dx−gA+(x−)

τ = x+ω A+ =
E0

ω
f(τ) , γ =

p+ω

gE0

ImS =
p2
⊥

2gE0

π

f ′(f−1(γ))

Action as a function of 
coordinates

Quasiclassical trajectory Trajectory of a particle moving 
with constant acceleration 
coincides with the that of 
particle in a constant field E

Action

Introduce new variables

Imaginary part of action
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Γ = e
−

πp2
⊥

gE

N1

N2

= exp

{

−

π

gE
(m2

1
− m2

2
)

}

≈ exp

{

−

π∆m

gE
2̄m

}

= exp

{

−

2π∆m

ā

}

Schwinger vs Unruh

ImS corresponds to instable, classically forbidden 
motion. Vacuum decay probability is Γ=exp(-2ImS).

In the constant field 

How to reconcile this with Unruh thermal emission? 

In Schwiner formula we average over produced 
pairs while in Unruh one over the excited states 
of the classical detector. The relative occupation 
number of two excited states is 
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γ =

p+ω

gE0

ω = ps− =

p
2
s⊥

ps+

! ps+

Adiabaticity parameter
The adiabaticity parameter measures how rapidly the 
external field change

At early proper time τ<<1/Qs it follows from the parton 
model that γ<<1 since 

φ(p⊥) ∝ S⊥e−
2πm2

⊥

gE = S⊥e
−

p2
⊥

Q2
sThen the spectrum is: 

as it should be in 
E=const
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Time evolution of pair production

At later time τ~1/Qs the parton cascade decays and γ~1

φ(p⊥) ∝ S⊥e−
4πp

−

ω = S⊥e−
p
−

T

T !
1

2
√

2πQs

The field E∝e-ωτ due to the screening of the original 
field by the field of produced pairs.

Momentum conservation (momentum lost by the fields 
equals momentum gain by produced particles) implies
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w1(σ, p) = e
−2ImS

w0

∞∑

n=0

w
n

1 =
w0

1 − w1

= 1

W0 =
∏

σ,p

w0(σ, p) = e
P

ln(1−w1) =
∣

∣eiLV t
∣

∣

2
= e−2ImLV t

ImLV t = −
1

2

∑
ln(1 − w1) = −d

V

2(2π)3

∫
d3p ln(1 − w1)

Statistical interpretation

Consider the relative probability of single pair production

The probability that no pairs is produced w0 satisfies

Total probability that vacuum is unchanged is 
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ImS = −
d V

2(2π)3

∫
d3p ln(1 − w1(σ,p)) = −

Ω

2T

Statistical interpretation

Narozhny and Nikishov demonstrated in 1970 that the 
imaginary part of the effective action for multi-pair 
production has the same form as the thermodynamic 
potential:

We can follow the produced system till times τ~1/T.

However, we cannot follow it all the way to the 
equilibrium until we solve the back-reaction problem.

see Cooper, Eisenberg, Kluger, Mottola, Svetitsky,  hep-ph/9212206
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Summary

We have started to reexamine the role of the vacuum 
instability in high energy QCD.

Due to existence of a hard scale Qs we hope to be 
able to analytically address many interesting 
problems. 

Already now we can see that these new ideas can 
considerably modify our physical picture of particle 
production in high energy. 
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