Rapid thermalization and thermal radiation:

From CGC to QGP

Kirill Tuchin

in collaboration with Dima Kharzeev and Genya Levin

IOWA STATE UNIVERSITY

2006 RHIC \& AGS Annual Users' Meeting

The main puzzle at RHIC

- Hydrodynamic models are successful if thermalization time is $\Delta t \approx 0.5 \mathrm{fm}$
- Naively, $\Delta t \sim 1 /(n \sigma) \sim \mathrm{fm} / \alpha_{\mathrm{s}}$

$$
\Delta t \sim 1 / \alpha_{s}^{13 / 5} Q_{s}
$$

(Baier, Mueller, Son, Schiff)
Why
thermalization
 is so fast?

Possible solutions

- Plasma instabilities (Mrowczynski; Arnold, Lenaghan, Moore).
- Early isotropization may help explain v_{2} (Arnold, Lenaghan, Moore; Rebhan, Romatschke, Strickland).
- No thermalization in PQCD (Kovchegov).
- AdS/CFT ©

Macroscopic picture

Space-time structure of the HIC

- Upon collision heavy ions experience very large deceleration.

Indeed, most of matter is produced in the transverse plane!

- How large is acceleration?

$$
a \sim e E / m \sim Q_{s}^{2} / m
$$

- It depends only on the strength of the nuclear field \Rightarrow Limiting fragmentation.

Comoving frame

- In the Rindler space x_{-}and x_{+}are event horizons. Therefore, the produced particle can carry information only about conserved quantities. This is realized in the thermal distribution with $T=a /(2 \pi)$ (Unruh,Hawking).

Hagedorn argument

- Consider breakdown of a high energy hadron of mass m into a final hadronic state of mass M. Transition probability:

$$
P(m \rightarrow M)=2 \pi|T(m \rightarrow M)|^{2} \rho(M)
$$

- In dual resonance model density of states is

$$
\rho(M) \approx \exp \left(4 \pi b^{1 / 2} M / 6^{1 / 2}\right)
$$

- Transition amplitude: $|T(m \rightarrow M)|^{2} \simeq \exp (-2 \pi M / a)$
- Probability conservation requires that $\Sigma_{M} P(M)=1$.

Limiting temperature

- Therefore the string tension cannot accelerate particles beyond

$$
a_{c r}=\sqrt{3 / 2} b^{-1 / 2}
$$

which exactly corresponds to the Hagedorn temperature:

$$
T_{H}=\frac{a}{2 \pi}=\frac{6^{1 / 2}}{4 \pi b^{1 / 2}}
$$

- One needs stronger fields to get $T>T_{H}$; e.g. CGC
- In this macroscopic quasiclassical picture one can also study phase transitions. (Ohsaku)

Microscopic picture

Particle production at high energies

- Structure of the partonic cascade at high energies:

Background field method

- Structure of the partonic cascade at high energies:

- Strength of the field is determined by the density of color charges in the transverse plane, i.e. $Q_{s}(y)$

Field configuration at low \times (I)

Kharzeev, KT hep-ph/051234;
Kharzeev, Levin, KT hep-ph/0602063

- (Chromo) Electric and Magnetic fields of a high energy hadron/nucleus are transverse (plane wave) and stable.
- However, this is true only for a non-interacting hadron. Boundary conditions at the interaction point generate the longitudinal fields.
- Recall reflection of light in Electrodynamics!

$$
A_{+}\left(x_{-}, x_{+}, x_{\perp}\right)=0, \quad x_{+} \leq x_{-}
$$

Field configuration at low \times (II)

$$
A(\mathbf{x}, t)=\int_{\mathbf{S}} d^{3} x^{\prime} \frac{\rho\left(\mathbf{x}^{\prime}, t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}
$$

- Since $Q_{s}(y)$ increases down the cascade, the parton transverse size decreases. Therefore, $\mathrm{x}_{\perp} \ll \mathrm{x}_{\perp}^{\prime}$
- and $\mathrm{A}(\mathrm{x}, \mathrm{t})$ does not depend on X_{\perp}

$$
E_{\|} \gg E_{\perp} \simeq B_{\perp} \gg B_{\|}
$$

- Fries, Kapusta and Li argue that non-Abelian interactions can produce both longitudinal chromoelectric and chromomagnetic fields.
- implications: see paper by Lappi \& McLerran

Supercritical fields

- The work done by the external chromo-electric field E accelerating a virtual qq pair apart by a Compton wavelength $\lambda_{c}=h / \mathrm{mc}$ is $\mathrm{W}=\mathrm{gEh} / \mathrm{mc}$.
- If $W>2 \mathrm{mc}^{2}$ the pair becomes real.

$$
E_{\mathrm{cr}}=\frac{m^{2} c^{3}}{g \hbar}
$$

- In QED $E_{c r=}=10^{16} \mathrm{~V} / \mathrm{cm}$ - beyond the current lab frontier.
- In QCD $\mathrm{g} \sim 1, \mathrm{~m} \sim \mathrm{Q}_{\mathrm{s}}$ or Λ, thus $\mathrm{E}_{\mathrm{cr}} \sim(1 \mathrm{GeV})^{2}$: pair production is a common phenomenon.

Vacuum rearrangement (I)

- Example: charged scalar field in time dependent electromagnetic background

$$
\left(\partial_{\mu}+i e A_{\mu}\right)^{2} \phi(x)+m^{2} \phi(x)=0
$$

Eigenstates: $\quad \phi_{p}^{ \pm}(x)=\frac{1}{(2 \pi)^{3 / 2} \sqrt{2 \omega_{-}}} e^{i \vec{p} r} g^{ \pm}(\vec{p}, t)$ where

$$
\ddot{g}(p, t)+\omega^{2}(t) g(p, t)=0, \quad \omega^{2}(t)=p^{2}-2 e p_{z} A_{z}+e^{2} A_{z}^{2}+m^{2}
$$

- Note, that $\phi_{\text {in }}=\phi(t \rightarrow-\infty)$ are different from $\phi_{\text {out }}=\phi(t \rightarrow+\infty)$

Vacuum rearrangement (II)

- Second quantization $\phi(x)=\sum_{i} a_{i, i n} \phi(x) a_{i, i n}(x)+a_{i, i n}^{\dagger} \phi_{i, i n}^{*}(x)$ where

$$
\left[a_{i, i n}, a_{j, i n}^{\dagger}\right]=\delta_{i j}, \quad a_{i, i n}|0\rangle_{i n}=0
$$

- Equivalently $\phi(x)=\sum_{i} a_{i, \text { out }} \phi(x) a_{i, \text { out }}(x)+a_{i, \text { out }}^{\dagger} \phi_{i, \text { out }}^{*}(x)$

$$
\left[a_{i, \text { out }}, a_{j, \text { out }}^{\dagger}\right]=\delta_{i j}, \quad a_{i, \text { out }}|0\rangle_{\text {out }}=0
$$

- Unitarity implies $a_{i, \text { in }}=\sum_{j}\left(\alpha_{i j} a_{j, \text { out }}+\beta_{j i}^{*} a_{j, \text { out }}^{\dagger}\right)$
- Therefore, even if $\langle 0| a_{i, \text { in }} a_{i, i n}^{\dagger}|0\rangle_{\text {in }}=0$

$$
\langle 0| a_{i, \text { in }} a_{i, \text { in }}^{\dagger}|0\rangle_{\text {out }}=\sum_{j}\left|\beta_{i j}\right|^{2}
$$

Particle production by black hole

- The same problem of quantization in external field

$$
D^{\mu} D^{\nu} g_{\mu \nu} \phi(x)+m^{2} \phi(x)=0
$$

- In Schwartzschild metric

$$
\phi_{\omega l m}(x)=r^{-1} R_{\omega l}(r) Y_{l m}(\theta, \varphi) \exp (\pm i \omega t)
$$

$$
R_{\omega l}(r) \approx\left\{\begin{array}{ll}
\exp \left(i \omega r^{*}\right)+\alpha_{\omega l} \exp \left(-i \omega r^{*}\right), & r^{*} \rightarrow-\infty \\
\beta_{\omega l} \exp \left(i \omega r^{*}\right), & r^{*} \rightarrow+\infty
\end{array} r^{*}=r+r_{g} \ln \left(r / r_{g}-1\right)\right.
$$

- Black hole emission rate $\left|\beta_{\omega l}\right|^{2} \propto \exp (-2 \pi \omega / \kappa)$ Hawking, 75 where the surface gravity is $\kappa=1 / 4 G M$

Propagator in external field

- Pair production rate = imaginary part of the propagator
- WKB approximation is quite useful for calculating tunneling probabilities.

Sources of classical fields

- see T. Lappi's numerical solution of Dirac equation in external field.

WKB approximation

- In the pair production process electron's energy changes from ϵ_{-}to ϵ_{+}where

$$
\epsilon_{ \pm}= \pm \sqrt{p^{2}(z)+m^{2}}+e E z
$$

- Pair production rate 「 $\approx e^{-2 I m s}$. Imaginary part of action ImS can be found by integrating phase over states with imaginary momentum:

$$
\Gamma=\exp \left\{-\int_{z_{a}}^{z_{b}} d z|p(z)|\right\}=\exp \left\{-\pi m_{\perp}^{2} / g E\right\}
$$

where the turning points of the linear potential are

$$
z_{a, b}=(\epsilon \pm m) / g E
$$

Canonical approach

- Gauge boson propagator in SU(2) can be found from equation of motion

$$
\left(\left(-\partial_{\mu}-i g A_{\mu}\right)^{2} \pm 2 e E_{z}\right) W_{ \pm}=0
$$

- In the quasiclassical approximation we seek solution in form $W=\exp (-i S-i p \cdot x)$ such that $S^{\prime \prime} \ll\left(S^{\prime}\right)^{2}$

$$
-2 \partial_{+} S\left(\partial_{-} S-g A_{+}\left(x_{-}\right)\right)+p_{\perp}^{2}+2 g \sigma E_{z}=0 ; \quad x_{+}>x_{-}
$$

- Introduce canonical momenta $P_{\mu}=-\partial_{\mu} S+g A_{\mu}$. Then S can be found along the classical particle trajectories.

Action as a function of

coordinates

- Quasiclassical trajectory
$x_{-}=\frac{p_{\perp}^{2}}{2} \int \frac{d x_{+}}{\left(p_{+}+g A_{+}\left(x_{+}\right)\right)^{2}}$
- Trajectory of a particle moving with constant acceleration coincides with the that of particle in a constant field E
- Action
$S=p_{-} x_{+}+\int d x_{+} \frac{p_{\perp}^{2}}{p_{+}+g A_{+}\left(x_{+}\right)}-\int d x_{-} g A_{+}\left(x_{-}\right)$
- Introduce new variables
$\tau=x_{+} \omega \quad A_{+}=\frac{E_{0}}{\omega} f(\tau), \quad \gamma=\frac{p_{+} \omega}{g E_{0}}$
- Imaginary part of action $\operatorname{Im} S=\frac{p_{\perp}^{2}}{2 g E_{0}} \frac{\pi}{f^{\prime}\left(f^{-1}(\gamma)\right)}$

Schwinger vs Unruh

- ImS corresponds to instable, classically forbidden motion. Vacuum decay probability is $\Gamma=\exp (-2 I m S)$.
- In the constant field $\Gamma=e^{-\frac{\pi p_{\perp}^{2}}{g E}}$
- How to reconcile this with Unruh thermal emission?
- In Schwiner formula we average over produced pairs while in Unruh one over the excited states of the classical detector. The relative occupation number of two excited states is

$$
\frac{N_{1}}{N_{2}}=\exp \left\{-\frac{\pi}{g E}\left(m_{1}^{2}-m_{2}^{2}\right)\right\} \approx \exp \left\{-\frac{\pi \Delta m}{g E} \overline{2} m\right\}=\exp \left\{-\frac{2 \pi \Delta m}{\bar{a}}\right\}
$$

Adiabaticity parameter

- The adiabaticity parameter measures how rapidly the external field change

$$
\gamma=\frac{p_{+} \omega}{g E_{0}}
$$

- At early proper time $T \ll 1 / Q_{s}$ it follows from the parton model that $\mathrm{Y} \ll 1$ since

$$
\omega=p_{s-}=\frac{p_{s \perp}^{2}}{p_{s+}} \ll p_{s+}
$$

- Then the spectrum is: $\phi\left(p_{\perp}\right) \propto S_{\perp} e^{-\frac{2 \pi m^{2}}{g E}}=S_{\perp} e^{-\frac{p_{\perp}^{2}}{Q_{s}^{2}}}$ as it should be in E=cons \dagger

Time evolution of pair production

- At later time $T \sim 1 / Q_{s}$ the parton cascade decays and $\gamma \sim 1$
- The field $E_{\infty} e^{-\omega T}$ due to the screening of the original field by the field of produced pairs.

$$
\phi\left(p_{\perp}\right) \propto S_{\perp} e^{-\frac{4 \pi p_{-}}{\omega}}=S_{\perp} e^{-\frac{p_{-}}{T}}
$$

- Momentum conservation (momentum lost by the fields equals momentum gain by produced particles) implies

$$
T \simeq \frac{1}{2 \sqrt{2 \pi} Q_{s}}
$$

Statistical interpretation

- Consider the relative probability of single pair production

$$
w_{1}(\sigma, p)=e^{-2 \operatorname{Im} S}
$$

- The probability that no pairs is produced wo satisfies

$$
w_{0} \sum_{n=0}^{\infty} w_{1}^{n}=\frac{w_{0}}{1-w_{1}}=1
$$

- Total probability that vacuum is unchanged is

$$
\begin{gathered}
W_{0}=\prod_{\sigma, p} w_{0}(\sigma, p)=e^{\sum \ln \left(1-w_{1}\right)}=\left|e^{i \mathcal{L} V t}\right|^{2}=e^{-2 \operatorname{Im} \mathcal{L} t} \\
\operatorname{Im} \mathcal{L} V t=-\frac{1}{2} \sum \ln \left(1-w_{1}\right)=-d \frac{V}{2(2 \pi)^{3}} \int d^{3} p \ln \left(1-w_{1}\right)
\end{gathered}
$$

Statistical interpretation

- Narozhny and Nikishov demonstrated in 1970 that the imaginary part of the effective action for multi-pair production has the same form as the thermodynamic potential:

$$
\operatorname{Im} \mathcal{S}=-\frac{d V}{2(2 \pi)^{3}} \int d^{3} p \ln \left(1-w_{1}(\sigma, \mathbf{p})\right)=-\frac{\Omega}{2 T}
$$

- We can follow the produced system till times $T \sim 1 / T$.
- However, we cannot follow it all the way to the equilibrium until we solve the back-reaction problem.

Summary

- We have started to reexamine the role of the vacuum instability in high energy QCD.
- Due to existence of a hard scale Q_{s} we hope to be able to analytically address many interesting problems.
- Already now we can see that these new ideas can considerably modify our physical picture of particle production in high energy.

