High p_T identified hadron ratios in $\sqrt{s_{NN}}$ =200GeV Au+Au collisions Takao Sakaguchi CNS, Univ. of Tokyo for the PHENIX Collaboration #### Outline of the talk - •Physics Motivation - •Detectors used for the analysis - •Ratios of several particles - •Comparison of Year-1 and Year-2 - Another Fun # Physics at high p_T particle ratio (I) Jet quenching - Jets will loose its energy in the dense medium - In Year-1, suppression of high p_T hadrons are seen - Both π^0 and h^+ , h^- - At even higher p_T , will suppression be more dramatic? Au+Au(b=0) Au+Au(b=0) dE/dx=0 dE/dx=1.0 GeV/fm 0.9 0.8 0.7 0.6 0.40.3 0.2 0.1 Xin-Nian, Wang, PRC Vol.58 (1998)2321 # Physics at high p_T particle ratio (II) Baryon number transport - Baryon number will be transported via gluon junction - Another p_T kick on baryon spectra (accelerated?) - In Year-1, proton spectra reaches close to charged π spectra - What will happen even more high p_T ? (return to pQCD base?) - Baryon/meson ratio will give an information on baryon number transport - Jet quenching enhances baryon transport? - π^+ , π^- , π^0 suppress, pbar, p enhance? I. Vitev and M. Gyulassy, PRC65(2002)041902 #### PHENIX detector Detectors used in the analysis - Events @ $\sqrt{s_{NN}} = 200 \text{GeV}$ Au+Au Collision are used - **ZDC** # Analysis (proton, pbar and π^+ , π^-) - Using High Resolution TOF PID device and Drift Chamber. - Making p_T dependent 2σ cut in squared mass - Range and Systematic Error - proton, pbar: up to 4GeV/c - p_T dependent: 11% - Overall normalization: Central 18%, Peripheral 16.4% - $-\pi^+, \pi^-$: up to 2GeV/c - p_T dependent 7% - Overall normalization: Central 14%, Peripheral 14% #### PHENI # Analysis (Neutral π) - Using Electro-magnetic Calorimeter - $1 \text{GeV/c} < p_T < 10 \text{GeV/c} \text{ for } \pi^0 !$ - Calculate γγ invariant mass spectra and subtract combinatorial background - Efficiency is evaluated by embedding simulated π^0 into real event. - Systematic Error - $-p_T$ independent: 9% - Overall: 20-30% #### PH # pbar/p as a function of p_T - pbar/p ratio extends up to 4GeV/c in Year-2 - Point-by-Point Error: Statistical Error - Bands by lines: Common Systematic Error - It is almost flat over the entire p_T #### PH ENIX # Centrality dependences of pbar/p #### PHENI # pbar/ π and p/ π pbar/ π , p/ π ratios - p_T <2GeV, pbar/ π^- , p/ π^+ - $p_T > 1$ GeV, use π^0 with π^- , π^+ - Point-by-Point Errors include point-by-point statistics+systematic errors - Bands: p_T independent systematic errors - Decreasing at much more high p_T ? ### Comparison with Year-1 Data - Data Compared to Year-1 - Both Year-1 and Year-2 are consistent within systematic errors - •Another hint. - –More π rather than protons? # Another Interesting Analysis PH※ENI High p_T charged π #### See F. Messer poster presentation! #### RICH detectors in PHFNIX #### For electron and positron: - Momentum Threshold : 18MeV - Average number of PMT: 4-5 - Number of photo-electron is 2*PMT : ~ 10 #### For pions: - Momentum Threshold: 4.7GeV/c - Number of photo-electrons strongly dependent on momentum - Kaon Threshold: 15 GeV/c | P(GeV) | 5 | 6 | 7 | 8 | 9 | |---------------|-----|----|----|----|----| | %max
ph-el | 4.7 | 39 | 56 | 66 | 73 | - RICH already tagged "electrons" excellently - See R. Averbeck(single electrons) and A. Frawley($J/\psi \rightarrow e^+e^-$) talks! - Also a strong device for tagging charged π for $p_T > 5 \text{GeV/c}$ ### High $p_T \pi^-/\pi^+$ ratio See F. Messer poster presentation! • Still the ratio is ~ 1 at high p_T in Minimum Bias data within systematic errors ### Conclusion - Ratio of anti-proton/proton is measured up to 4GeV/c - The result is almost flat over the entire p_T and centrality within systematic error - Ratio of baryon/meson through pbar/ π and p/ π is measured up to 4GeV/c - Hints on the effect of dense medium - Consistent with Year-1 result within systematic errors - High $p_T \pi^-/\pi^+$ ratio is measured ($p_T > 5 \text{GeV/c}$) - Flat over p_T and centralities within systematic errors #### **Another Conclusion** # Viva PHENIX! Map No. 3933 Rev. 2 UNITED NATIONS