

High p_T identified hadron ratios in $\sqrt{s_{NN}}$ =200GeV Au+Au collisions

Takao Sakaguchi
CNS, Univ. of Tokyo
for the PHENIX Collaboration

Outline of the talk

- •Physics Motivation
- •Detectors used for the analysis
- •Ratios of several particles
- •Comparison of Year-1 and Year-2
- Another Fun

Physics at high p_T particle ratio (I) Jet quenching

- Jets will loose its energy in the dense medium
 - In Year-1, suppression of high p_T hadrons are seen
 - Both π^0 and h^+ , h^-
 - At even higher p_T , will suppression be more dramatic?

Au+Au(b=0)

Au+Au(b=0)

dE/dx=0

dE/dx=1.0 GeV/fm

0.9

0.8

0.7

0.6

0.40.3

0.2

0.1

Xin-Nian, Wang, PRC Vol.58 (1998)2321

Physics at high p_T particle ratio (II) Baryon number transport

- Baryon number will be transported via gluon junction
 - Another p_T kick on baryon spectra (accelerated?)
 - In Year-1, proton spectra reaches close to charged π spectra
 - What will happen even more high p_T ? (return to pQCD base?)
- Baryon/meson ratio will give an information on baryon number transport
 - Jet quenching enhances baryon transport?
 - π^+ , π^- , π^0 suppress, pbar, p enhance?

I. Vitev and M. Gyulassy, PRC65(2002)041902

PHENIX detector

Detectors used in the analysis

- Events @ $\sqrt{s_{NN}} = 200 \text{GeV}$ Au+Au Collision are used
- **ZDC**

Analysis (proton, pbar and π^+ , π^-)

- Using High Resolution TOF PID device and Drift Chamber.
- Making p_T dependent 2σ cut in squared mass
- Range and Systematic Error
 - proton, pbar: up to 4GeV/c
 - p_T dependent: 11%
 - Overall normalization: Central 18%, Peripheral 16.4%
 - $-\pi^+, \pi^-$: up to 2GeV/c
 - p_T dependent 7%
 - Overall normalization: Central 14%, Peripheral 14%

PHENI

Analysis (Neutral π)

- Using Electro-magnetic Calorimeter
 - $1 \text{GeV/c} < p_T < 10 \text{GeV/c} \text{ for } \pi^0 !$
- Calculate γγ invariant mass spectra and subtract combinatorial background
- Efficiency is evaluated by embedding simulated π^0 into real event.
- Systematic Error
 - $-p_T$ independent: 9%
 - Overall: 20-30%

PH

pbar/p as a function of p_T

- pbar/p ratio extends up to 4GeV/c in Year-2
- Point-by-Point Error: Statistical Error
- Bands by lines: Common Systematic Error
- It is almost flat over the entire p_T

PH

ENIX

Centrality dependences of pbar/p

PHENI

pbar/ π and p/ π

pbar/ π , p/ π ratios

- p_T <2GeV, pbar/ π^- , p/ π^+
- $p_T > 1$ GeV, use π^0 with π^- , π^+
- Point-by-Point Errors include point-by-point statistics+systematic errors
- Bands: p_T independent systematic errors
- Decreasing at much more high p_T ?

Comparison with Year-1 Data

- Data Compared to Year-1
- Both Year-1 and Year-2 are consistent within systematic errors
- •Another hint.
 - –More π rather than protons?

Another Interesting Analysis

PH※ENI

High p_T charged π

See F. Messer poster presentation!

RICH detectors in PHFNIX

For electron and positron:

- Momentum Threshold : 18MeV
- Average number of PMT: 4-5
- Number of photo-electron is 2*PMT : ~ 10

For pions:

- Momentum Threshold: 4.7GeV/c
- Number of photo-electrons strongly dependent on momentum
- Kaon Threshold: 15 GeV/c

P(GeV)	5	6	7	8	9
%max ph-el	4.7	39	56	66	73

- RICH already tagged "electrons" excellently
 - See R. Averbeck(single electrons) and A. Frawley($J/\psi \rightarrow e^+e^-$) talks!
- Also a strong device for tagging charged π for $p_T > 5 \text{GeV/c}$

High $p_T \pi^-/\pi^+$ ratio

See F. Messer poster presentation!

• Still the ratio is ~ 1 at high p_T in Minimum Bias data within systematic errors

Conclusion

- Ratio of anti-proton/proton is measured up to 4GeV/c
 - The result is almost flat over the entire p_T and centrality within systematic error
- Ratio of baryon/meson through pbar/ π and p/ π is measured up to 4GeV/c
 - Hints on the effect of dense medium
 - Consistent with Year-1 result within systematic errors
- High $p_T \pi^-/\pi^+$ ratio is measured ($p_T > 5 \text{GeV/c}$)
 - Flat over p_T and centralities within systematic errors

Another Conclusion

Viva PHENIX!

Map No. 3933 Rev. 2 UNITED NATIONS