

High transverse momentum identified hadron ratios in \(\forall \sigma_{NN} = 200 \text{GeV Au+Au collisions at RHIC} \) Takao Sakaguchi, CNS, University of Tokyo, for the PHENIX Collaboration

Motivation of the Study: Observation of Quark Gluon Plasma!

It is predicted from lattice QCD calculation that at high energy density, a phase transition from hadronic matter to a plasma of deconfined quarks and gluons (QGP) may occur, which is believed to exist in the early universe a few microseconds after the Big Bang. Relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is expected to produce such a phase transition.

Idea on Searching QGP in Relativistic Heavy Ion Collision experiment Estimation of energy density we expect to reach: ~2-3GeV/fm3 •Compare Au+Au collision data with p+p collision data at the same energy per nucleon •If there is a significant change from p+p collision data scaled by the number of participant nucleons (N_{part}) or binary collisions (N_{coll}), there will be an additional nuclear effect •Number of binary collisions: Number of underlying binary nucleon-nucleon collisions. . Centrality: Degree of nuclear overlapping, which is associated with the number of participant OGP state!? nucleons (number of participated nucleons into the collisions). In Au+Au collision, 2 to 197×2 $_{ix}(b) = \int T_A(\overrightarrow{s} + \frac{b}{2})T_B(\overrightarrow{s} - \frac{b}{2})ds$ Physics on QGP scoped by high transverse momentum(p_T) hadron ratios Baryon number transport Jet Quenching Baryon number will be transported via gluon junction that will give an another p_T kick on baryon spectra (accelerated) Jet will loose its energy in the dense medium In Year-1, proton spectrum reaches close to charged π spectrum In Year-1, suppression of high p_T hadrons are seen for both π^0 and h^+ , hen more high p_T ? (return to pQCD base?) At even higher p_T , supp ion expected to be more dramatic I. Vitev and M. Gyulassy, PRC65(2002)041902 neson ratio will give an information on baryon number Jet quenching can enhance the baryon transport effect $(\pi^{\nu}, \pi^{\nu}, \pi^{0} \text{ suppress, while pbar, p enhance})$ Xin-Nian, Wang, PRC Vol.58 (1998)2321 PHENIX Detector Central Arms A hint of Jet Quenching from Year-1 result vents @ √s_{NN}=200GeV u+Au Collisions -1.2< |v| <2.3 yield in central collisions compared to the p+p data scaled by number of binary •Perinheral collision data is well consistent with scaled p+p data

Analysis (proton, pbar and π^+ , π^-)

Using High Resolution TOF PID device and Drift Chamber.

"Suppression of Hadrons with Large Transverse Momentum in Centre Collisions at sqrt(s) = 130 GeV", K. Adcox et al., Phys. Rev. Lett. 88

- \blacksquare Making p_T dependent 2σ cut in squared mass
- Range and Systematic Error
 - proton, pbar: up to 4GeV/c
 ■p_T dependent: 11%
 - Overall normalization: Central 18%, Peripheral 16.4%
 - \blacksquare $\pi^{\scriptscriptstyle +},$ $\pi^{\scriptscriptstyle -}$: up to 2GeV/c
 - ■p_T dependent 7%
 - Overall normalization: Central 14%, Peripheral 14%

Analysis (Neutral π)

- Using Electro-magnetic Calorimeter
- 1GeV/c<p₇<10GeV/c for π⁰!

 Calculate γγ invariant mass spectra and subtract combinatorial background
- \blacksquare Efficiency is evaluated by embedding simulated π^0 into real event.
- Systematic Error
- p_T independent: 9%, Overall: 20-30%

Anti-proton to proton ratios as functions of p_T and number of participant nucleons (Centrality)

Baryon to meson ratios through Anti-proton and proton to pion ratios as a function of p_T

•pbar/p ratio extends up to 4GeV/c in Year-2

- •Point-by-Point Error: Statistical Error
- Bands by lines: Common Systematic Error
- •It is almost flat over both entire p_T and centralitie (number of participant nucleons)

•pbar/ π , p/ π ratios - p_T <2GeV, pbar/ π , p/ π

 $-p_{\tau^{>}}1$ GeV, use π^{0} with π^{*} , π^{*} •Point-by-Point Errors include point-by-point statistics+systematic errors
•Bands: p_{τ} independent systematic

- errors •Decreasing at much more high p_T ?
- •Data Compared to Year-1
- •Both Year-1 and Year-2 are consistent within systematic error
- •Another hint.

-More π rather than protons?

Conclusion

**Ratio of anti-proton/proton is measured up to 4GeV/c. The result is almost flat over the entire p_T and centrality within systematic error
**Ratio of baryon/meson through pbar/π and p/π is measured up to 4GeV/c. Hints on the effect of dense medium is seen. The result is consistent with Year-1 result within systematic error

