
Repixellization, with an analytic
solution for pixel overlap

(Still not brain surgery)

Paul Stankus, Apr. 2, 2008

Updated Jun. 11, 2008

First we look at just one pixel in some
original grid in some rectangular
sky coordinates.

We only have one number for the total
amount of light in this pixel, so if
we don’t make any assumptions
about how the brightness varies
within the pixel then we must
approximate it as uniform. We can
represent this as a (large) set of
points chosen randomly within the
pixel’s box.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

To apply a shear we just multiply the
(x,y) vector of each point by a
shear matrix; here

(Q: what is the magnitude of the shear
generated by this matrix?)

The red points are the new locations of
the original black points, and the
red grid is the transformation of the
original black pixel grid.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

0.90 0.05

0.05 1.1

Forgetting about the original pixel grid,
the red points and their surrounding
red parallelogram are now our best
approximation to what the sheared
image of the original pixel would
look like.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

Now suppose we want to re-pixellate
the sheared image onto a new
grid,with somewhat lower
resolution/bigger pixels, as shown
in blue. (Here the new grid is chosen
to be aligned with the same sky
coordinate system as the original pixel
grid; this is not strictly necessary, but
the new grid should at least be
rectangular.)

The question is, how do we distribute
the brightness of the original pixel,
now sheared, into the new larger
pixels?

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

For a particular pixel in the new grid,
like the one highlighted here, the
obvious choice is to fill it with a
number proportional to how many
of the sheared points fall into the
new pixel’s box.

In essence, we transfer to the new pixel
a fraction of the original pixel’s
brightness, that fraction being what
proportion of the area of the
sheared original box is also within
the new box (basically the ratio
blue/(blue+gray) in the color
scheme shown here).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

Determining the area of the overlap
between two polygons by
counting random points which
land in both is reliable (it’s the
Metropolis algorithm for
integration), but slow and kind
of dumb; plus, you have to
worry about exactly how many
points you need so as not to
introduce a significant
statistical sampling error.

Much faster would be a general
formula to calculate the overlap
area between two polynomials;
see next slides of one approach.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

A simple analytical approach is to (1) Find the
polygon defined by the overlap of the two
pixel boundaries, then (2) Calculate its area,
and (3) Use the ratio of that area to the area
of the original pixel as the fractional
weighting to re-distribute the original pixel’s
intensity to the new pixel.

Though the overlap polygon could be somewhat
complicated in shape, we can be assured that
it is convex as long as the two original
boundary polygons are both convex.

1
2

3

4

5

6

1
2

3

4

5

6

O

O

Here’s a simple, reasonably fast algorithm for finding
the overlap polygon between two convex polygons and
then calculating its area:

1. All the vertices of the overlap polygon are either
(i) Intersections between side segments of the two parent
polygons (red), or (ii) Vertices of the original polygons
which are inside the other parent (green). If there are no
such points of either type then the parent polygons do not
overlap and the overlap area is (of course) zero.

2. Compile a list of all points of the two types, and these
will be the vertices of the overlap polygon. Pick a point O
which is known to be within the overlap polygon -- the 2-D
average of all the vertices should be fine -- and then sort &
order the vertices according to their opening angle relative
to O and to one point chosen as the first vertex.

3. The area of the polygon is then the sum of the areas of
all the triangles (O,vertexn,vertexn+1), which are fast/easy to
calculate using the ordinary vector cross product. (Note that
for this calculation the origin/anchor point O does not have to be within the
polygon, though if it is taken to be outside the polygon then one has to be
careful about accounting for triangles with negative area.)

O

This algorithm may arguably be overkill for the specific
case of the overlap between a rectangle and a parallelogram,
but it is simple and reasonably fast. To implement it we need
at least these three utility subroutines:

1. Given a polygon and a point, decide whether the point
is or is not within the polygon, with a specific default if the
point lies on an edge or is one of the vertices.

2. Given two line segments, determine if they intersect
along their lengths, and if they do then return the
intersection point. Again, we need a specific default for
the cases that one of the segments endpoints lies on the
other segment, or if the two segments are identical and/or
contained within the same line.

3. Given an origin point O and an ordered pair of vertices vn
and vn+1, determine the opening angle between the two
vectors (O, vn) and (O, vn+1) within a 0-2 continuous range.

vn

vn+1

These should be pretty straightforward if anyone’s up
for a coding exercise. Note that if you want to get fancy, the general
subject of polygon clipping in vector graphics is very highly developed; see
http://www.cs.fit.edu/~wds/classes/graphics/Clip/clip/clip.html
for just one example.

