Phi Production in Au + Au collision at RHIC-PHENIX

Susumu SATO (JSPS/BNL) for the PHENIX collaboration

Contents:

- 1. Interests in ϕ measurement
- 2. Experimental measurement of ϕ at PHENIX
- 3. Current Status
 PID of Kaons
 Outlook for improvement of S/N

Environment of ϕ meson in the fireball

 In the heavy ion collision system at the RHIC energy, higher temperature is expected to be achieved with relatively less baryon density.

Expectation of ϕ (1020) mass at the high temperature environment

(1) Mass shift in hot matter \rightarrow Less yield in KK decay mode is expected.

- (2) Increase of mass width
 - → Change in Branching ratio, and/or
 - → Broadening of invariant mass distribution.
 - (i)Phys. Lett.B262(91)485, J.Rafelski et al. (assuming a model on QCD vacuum structure)
 - (ii) Phys. Lett. B253(91)15, E. Shuryak et al. (assuming K meson modification by collective interaction)
- (3) Two mass peaks *Phys. Rev. C50(94)50 M. Asakawa et al.* (*QCD sum rules*)
- (1-cf.) Mass shift in dense matter Phys. Rev. C46 (92)R34 T. Hatsuda et al. (QCD sum rules)

Unique experimental capability of ϕ measurement at RHIC-PHENIX

Current status (PID selection of K⁺ and K⁻)

- * Clear Separation of K⁺ and K⁻ is achieved.
- * For Kaon selection, use momentum dependent $2\sigma_{m^2}$ cut (see next).

Current status (Selection of K⁺ and K⁻) [cont'd]

Multiple scattering Momentum resolution

Time of Flight Resolution

momentum dependent fitting is used.

Outlook of kinematical cut in invariant mass. And concerns.

- > Initial angle correlation cut between daughter K's Especially for the low momentum ϕ .
- > Energy asymmetry cut

$$\begin{pmatrix} E \\ p\cos\vartheta \end{pmatrix} = \begin{pmatrix} \gamma & \gamma\beta \\ \gamma\beta & \gamma \end{pmatrix} \cdot \begin{pmatrix} E^* \\ p^*\cos\vartheta^* \end{pmatrix}$$

$$Asym. \equiv \frac{p_1 \cos \vartheta_1 - p_2 \cos \vartheta_2}{p_1 \cos \vartheta_1 + p_2 \cos \vartheta_2} = \frac{p_1^* \cos \vartheta_1^*}{\beta E^*} \quad \text{"1" and "2" denote daughter K particles}$$

"*" denotes c.m. system,

 $E^* \sim 510 \text{ [MeV/c^2]}, \text{ and } p_1^* \sim 127 \text{[MeV/c]},$ and $\cos \theta_1^*$ should be uniformly distributed (0~1), Therefore signal is to be with "Asym. $< (p_1^*/E^*) \sim 1/4$ ", assuming $\beta \sim 1$.

- Multiplicity/Centrality dependence
- Systematics of K⁺ K⁻ for background evaluation (i) K⁺ and K⁻ from different event each other (ii) from same event, but K+K+ pair or K-K- pair

Summary

(1) In $(s_{NN})^{1/2} = 200$ GeV Au + Au, ϕ measurement is of large interest.

Change in (i) mass shift, two peaks, (ii) mass width, (iii) branching ratio

- (2) At RHIC PHENIX, in $(s_{NN})^{1/2} = 200 \text{ GeV Au} + \text{Au data};$
 - Using TOF, K⁺ and K⁻ is identified well.
 - Kinematical cut, like asymmetry cut, is being studied