

HBT

Recent Devlopments & Historical Perspectives

Ron Soltz, LLNL 19th Winter Workshop on Nuclear Dynamics Febrary 9, 2003

Outline

- •Why I should not give this talk
- •Why I will give it anyway
- Historical perspectives
- •Recent results, a closer look
- •The Partial Coulomb Correction
- & New Techniques

Answers

- •Why I should not give this talk
 - Results the work of <u>A. Enokizono</u>, <u>M. Heffner</u>, <u>J. Burward-Hoy</u>, <u>S. Johnson</u> (I'm just an administrator)
 - Short on new results, long on opinions
 - Introduction unoriginal, see QM95 pre-conference workshop
- •Why I will give it anyway
 - That's what administrators do!

GGLPYou've come a long way baby!

GGLP 60, 1'st Theory Kopylov 74, Heavy Ions Gyulassy 79, Gamow, etc Pratt 84, kT dependence Csorgo+ 96, core/halo, flow

Analysis advances driven by data quality

19th Winter Workshop 02/09/2003 R. Soltz

PHENIX Run-1 HBT

Phys. Rev. Lett, 88:192302 (2002)

Everything you need to know about Run-1 HBT

- Sys+Stat errors appear >1/2 fm
- R_s , $R_o(k_T)$ similar to <1 fm
- R₁ depends on energy

No smoking R_{out}/R_{side} gun

more PHENIX Run-1 HBT

Physics same in LCMS, but easier in PCMS

PHENIX Run-2 Preliminiary

- 9 bins in k_T , (0-30%) centrality
- 9 bins in centrality, $\langle k_T \rangle = 0.46 \text{ GeV/c}$

The gun has not taken up smoking at 200 GeV

Leave theory to theorists, focus on data (for now)

Centrality, a closer look

k_T caveat

Phys. Rev. C, 66:054906 (2002) and nucl-ex/0207005

 sqrt(s) GeV
 kT GeV/c

 200
 0.46

 17
 0.39

 5
 0.32

- All radii exhibit linear <N_{part}>1/3 scaling
- *with* energy dependence

How can something so simple be so puzzling?

R. Soltz 19th Winter Workshop 02/09/2003

Run-2 vs k_T , controlling centrality

Energy dependence

- ullet R_{side} slight increase
- R_{long} increasing
- R_{out} not yet significant

Energy differences becoming more apparent

Need better control of systematic errors

Beating down systematic errors

- •Statistical errors now approaching 2-3%!
- •Sys. errors same range for most Exp.
 - momentum resolution
 - two-track resolution
 - fitting techniques
 - residual correlations
- Partial Coulomb correction hovers ~5%

Partial Coulomb needs a closer look

The Partial Coulomb Correction

Ceres - Y.M. Sinyukov et al, Phys. Lett, B432:248 (1998)

A pretty good approximation

Only core contributes to symmetrization and coulomb effects

- F = coulomb correction
- G = gaussian (symmetrization)

$$C_{2} = C_{core} + C_{halo}$$

$$C_{2} = \lambda F (1 + G) + (1 - \lambda)$$

Resonances - Weidemann and Heinz, Phys. Rev. C 56:3265 (1998)

Maybe a better approximation

- core = direct + ρ + K^* + Δ + Σ^*
- halo = all else except ω - ω , ω -core, and omit $(1+G_{\omega})$ term

$$C_2 = \lambda_{core} F_{core} (1 + G_{core}) + \lambda_{\omega} F_{\omega} + (1 - \lambda_{core} - \lambda_{\omega})$$

Days of λ as fudge factor are numbered

One thing we do know

Four different methods to integrate Coulomb Waves

- E866 M.Baker, MAXIMA integration
- NA44 S. Pratt & T. Humanic, Fast MC integration
- CRAB S. Pratt, MC integration
- CorAL M. Heffner & D.Brown (Correlation Algorithm Library)

Coulomb corrections differ by 0.5% or less

Fit λ where coulomb dominates

- $0.03 < q_{out} < 0.05$ GeV/c in PCMS is one place
- similar region in LCMS occurs further out in q
- $\pi^+\pi^-$ correlation is another

Can we avoid the correction altogether

Direct fits to Kaons and Protons

Proton

40

60

100 Qinv (MeV)

80

0.9

0.8

0.7

20

Fits to raw correlation functions

- Corrected only for 2-track
- 1D CorAL fits
- kaons and protons
- Extendable to 3D in principle
- Includes partial coulomb

Brute force source imaging

CorAL results with $2\pi R_{inv}(k_T)$

Easily extendable to non-identical particles

Conclusions

- Slow and steady progress in HBT the result of good theoretical input and vastly improved data
- Systematic trends reveal subtle and not so subtle variation with N_{part} , k_T , and energy
- Systematic errors from coulomb still loom large, but not for long
- New methods show promise for the future