

#### Forward Calorimeters in PH#ENIX

- Measuring Centrality in d-Au collisions at RHIC
  - p-A collisions a microscopic laboratory to test our understanding of initial state effects in A-A
  - Any signature worth measuring in A-A (vs. centrality)
     is worth measuring in p/d-A (vs. centrality)
  - Most interesting signature d-Au high p<sub>T</sub> suppression may differentiate between QGP and CGC





Central d-Au suppression?



# Centrality: p-A vs. A-A PH\*ENIX in rest frame of one nucleus



A-A: Count spectators leaving beam pipe

- measure N<sub>part</sub> directly (fixed target only)
- obtain N<sub>binary</sub> from Glauber calculation





 $\underline{\text{p-A:}}$  Count  $N_{grey}$  &  $N_{black}$ 

• obtain N<sub>binary</sub> from Glauber + model



## AGS & SPS Examples ||





- E910  $\Lambda$  multiplicity vs.  $\nu = N_{binary}$
- Additive Quark Model for insight *PRL 85:4868 (2000)*



• Without measuring  $v(N_{grey})$ , such extrapolations are not possible



NA49 Preliminary



#### d-Au in RHIC tunnels PHENIX



**FCAL** 

- > We also instrumented d-side tunnel
  - to calibrate detector
  - to identify n-Au interations



- > Phobos has also instrumented forward calorimeters (pcal)
  - their d-side detector is smaller





## Calorimeter Design



(Re) use E864 Pb-Sc modules

NIM A406 (1998) 227

10x10 cm x 117 cm length

47x47 spaghetti fibers

AGS Resolution 0.35/sqrt(E)





~400 modules rescued from "graveyard" tested with cosmics Jun-Sep. by PHENIX & PHOBOS
Assembled two 9x10 arrays Nov-Dec Calibrated during run with cosmic trigger and movable stands



### Uncalibrated FCAL Data PHENIX





#### Correlation with ZDC PH\*ENIX







# Centrality determination | |



$$P(N_{grey}) = \sum_{v} P(N_{grey} | v) \pi(v)$$
 Glauber

Geometric Cascade Model - Andersson et al. PLB 73:343 (1978)

Negative binomial, w/  $\overline{N_{grev}}(v) \propto v$ 

Intra-Nuclear Cascade - Hegab and Hufner, PLB 105:103 (1981)

Secondary Recoil, w/  $\overline{N_{grey}}(v) \propto v^2$ 

Polynomial Model - Chemakin et al., PRC 60:024902 (2002)

Regular binomial, w/  $\overline{N_{grev}}(v) = c_0 + c_1 v + c_2 v^2$ 



- All methods acceptance dependent by definition
- First and last give distribution  $P(N_{grev}|v)$





# Conclusions & Centrality PH\*ENIX

- An important new detector has been added to PHENIX to improve the centrality measurement in d-Au
- The Forward Calorimeters work!
- Full calibrations, simulations, analysis are underway
- Centrality determined from various forms for  $P(N_{FCAL}|v)$ , beginning with the second order polynomial for  $< N_{FCAL} >$
- We are not limited to FCAL, e.g.  $P(N_{FCAL}, N_{ZDC}, N_{BBC}|v)$ ,
- Systematic errors determined from different models
- And finally, study physics of high  $p_T$  suppression,  $J/\psi$ , dileptions, strangeness, and perhaps even HBT