Centrality Dependence of Hadron Correlations in dAu Collisions

Anne M. Sickles for the PHENIX Collaboration

LHC results

(d) CMS N \geq 110, 1.0GeV/c<p_<3.0GeV/c

initial or final state effect?

initial or final state effect?

RHIC d-Au data can provide excellent constraints due to the difference in collision energy, saturation scale and initial geometry large data sample from 2008

PRL 107, 172301 (2011)

PHYSICAL REVIEW LETTERS

week ending 21 OCTOBER 2011

Suppression of Back-to-Back Hadron Pairs at Forward Rapidity in d + Au Collisions at $\sqrt{s_{NN}} = 200$ GeV

no evidence for long range correlation at $\Delta \phi \sim 0$

no evidence for long range correlation at $\Delta\phi \sim 0$

however, this is at relatively high p_T and only 0-20% central—not necessarily the most sensitive place to look...

Centrality Selection

Au

MPC

BBC-South

BBC Charge distribution well described by Glauber MC + negative binomial distribution

minimizing jet contributions

- normal two particle correlations: look at as high p_T particles as possible
 - minimizes combinatoric background, maximizes jet correlations
- near side jets are a small $|\Delta \eta|$ correlation

minimizing jet contributions

- normal two particle correlations: look at as high p_T particles as possible
 - minimizes combinatoric background, maximizes jet correlations
- near side jets are a small $|\Delta \eta|$ correlation

the plan: keep one particle at very low p_T to maximize sensitivity to underlying event & select as large Δη as possible within midrapidity acceptance

central events: 0-5% peripheral events: 50-88%

as a function of p_T

- keep one particle at 0.5-0.75GeV/c
- move other particle up in pT from 0.5-3.5 GeV/c

8

as a function of p_T

- keep one particle at 0.5-0.75GeV/c
- move other particle up in pT from 0.5-3.5 GeV/c

how much of this could be due to incomplete subtraction of the jets?

- vary the $|\Delta \eta|$ cut from 0.36-0.7
 - saw no difference in the modulation

- vary the $|\Delta \eta|$ cut from 0.36-0.7
 - saw no difference in the modulation
- look at the charge sign dependence:
 - jet correlations are enhanced for opposite sign pairs and suppressed for same sign pairs

- vary the $|\Delta \eta|$ cut from 0.36-0.7
 - saw no difference in the modulation
- look at the charge sign dependence:
 - jet correlations are enhanced for opposite sign pairs and suppressed for same sign pairs

- vary the $|\Delta \eta|$ cut from 0.36-0.7
 - saw no difference in the modulation
- look at the charge sign dependence:
 - jet correlations are enhanced for opposite sign pairs and suppressed for same sign pairs $\frac{\times 10^{-3}}{\times 10^{-3}}$

however, same sign pairs show a significant signal

so, how big is this effect?

back to previous results

back to previous results

would a 1% modulation of the background be visible here?

back to previous results

back to previous results

A. M. Sickles

single particle anisotropy

 $c2(p_{T,a},p_{T,b}) = s2(p_{T,a})s2(p_{T,b})$ \rightarrow factorization assumption: two particle modulation is the product of the single particle anisotropies

single particle anisotropy

c2(p_{T,a},p_{T,b}) = s2(p_{T,a})s2(p_{T,b}) →factorization assumption: two particle modulation is the product of the single particle anisotropies

A. M. Sickles

larger anisotropy observed than at ATLAS!

pPb vs dAu

d+A central collisions have much larger ε_2 than p+A

comparison with hydro

• good agreement with hydro calculation done at 200 GeV for 0-5% centrality

dAu vs pPb

dAu vs pPb

A. M. Sickles

what about the CGC?

good description of the ALICE data

Dusling & Venugopalan 1211.3701 & private comm.

what about the CGC?

- · Fourier coefficients are not the natural framework for these results
- calculate a normalized associated yield, which we presently don't have

what about the CGC?

significant signal expected at RHIC!

WARNING!!

cannot compare directly to data! We measure a modulation relative to the combinatoric background, not all of which is included in this calculation!

Dusling & Venugopalan 1211.3701 & private comm.

n>2

n>%

A. M. Sickles

20

• quadrupole anisotropy seen in central dAu collisions at RHIC

- quadrupole anisotropy seen in central dAu collisions at RHIC
 - magnitude larger than similar single seen in pPb collisions at LHC

- quadrupole anisotropy seen in central dAu collisions at RHIC
 - magnitude larger than similar single seen in pPb collisions at LHC
 - good agreement with a hydro calculation

- quadrupole anisotropy seen in central dAu collisions at RHIC
 - magnitude larger than similar single seen in pPb collisions at LHC
 - good agreement with a hydro calculation
 - scaling by ϵ_2 from Glauber MC can bring agreement with between LHC and RHIC data

- quadrupole anisotropy seen in central dAu collisions at RHIC
 - magnitude larger than similar single seen in pPb collisions at LHC
 - good agreement with a hydro calculation
 - scaling by ϵ_2 from Glauber MC can bring agreement with between LHC and RHIC data
 - great example of the complementarity between RHIC & LHC

- quadrupole anisotropy seen in central dAu collisions at RHIC
 - magnitude larger than similar single seen in pPb collisions at LHC
 - good agreement with a hydro calculation
 - scaling by ϵ_2 from Glauber MC can bring agreement with between LHC and RHIC data
 - great example of the complementarity between RHIC & LHC
- geometry and collision energy differences provide constraints on theoretical explanations

- quadrupole anisotropy seen in central dAu collisions at RHIC
 - magnitude larger than similar single seen in pPb collisions at LHC
 - good agreement with a hydro calculation
 - scaling by ϵ_2 from Glauber MC can bring agreement with between LHC and RHIC data
 - great example of the complementarity between RHIC & LHC
- geometry and collision energy differences provide constraints on theoretical explanations

conditional yields, neutron tagging, centrality dependence coming soon!

going forward: dAu vs pAu

going forward: dAu vs pAu

going forward: dAu vs pAu

opportunity to constrain geometry effects within a single experiment!

extras

0-20% central

- PHENIX central arm eta acceptance too small to get away from the jet contribution entirely
- jet fragmentation effects can be suppressed by looking at same sign pairs:

