Centrality Dependence of Hadron Correlations in dAu Collisions

Anne M. Sickles for the PHENIX Collaboration

LHC results

LHC results

p+Pb@ 5.02TeV

LHC results

p+p@ 7TeV

(d) $\mathrm{CMS} \mathrm{N} \geq 110,1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

p+Pb@ 5.02TeV

LHC results

p+p@ 7TeV

(d) $\mathrm{CMS} \mathrm{N} \geq 110,1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{P}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

p+Pb@ 5.02TeV

LHC results

p+p@ 7TeV
(d) $\mathrm{CMS} \mathrm{N} \geq 110,1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{P}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

can we look for such phenomena at RHIC?

initial or final state effect?

CGC/Glasma

hydrodyanmics

initial or final state effect?

CGC/Glasma

hydrodyanmics

RHIC d-Au data can provide excellent constraints due to the difference in collision energy, saturation scale and initial geometry large data sample from 2008
rapidity separated correlations

rapidity separated correlations

PHYSICAL REVIEW LETTERS
21 OCTOBER 2011

Suppression of Back-to-Back Hadron Pairs at Forward Rapidity in $d+\mathbf{A u}$ Collisions at $\sqrt{\boldsymbol{s}_{N N}}=200 \mathrm{GeV}$

rapidity separated correlations

Suppression of Back-to-Back Hadron Pairs at Forward Rapidity in $d+\mathbf{A u}$ Collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$

rapidity separated correlations

PHYSICAL REVIEW LETTERS
week ending 21 OCTOBER 201

Suppression of Back-to-Back Hadron Pairs at Forward Rapidity in $d+\mathbf{A u}$ Collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$

rapidity separated correlations

PHYSICAL REVIEW LETTERS
week ending 21 OCTOBER 201

Suppression of Back-to-Back Hadron Pairs at Forward Rapidity in $d+\mathrm{Au}$ Collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$

no evidence for long range correlation at $\Delta \phi \sim 0$

rapidity separated correlations

PHYSICAL REVIEW LETTERS

Suppression of Back-to-Back Hadron Pairs at Forward Rapidity in $d+\mathrm{Au}$ Collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$

no evidence for long range correlation at $\Delta \phi \sim 0$
however, this is at relatively high p_{T} and only $0-20 \%$ central \rightarrow not necessarily the most sensitive place to look...

Centrality Selection

BBC-South
BBC Charge distribution well described by Glauber MC + negative binomial distribution

Normal Jet

Correlations

- normal two particle correlations: look at as high рт particles as possible
- minimizes combinatoric background, maximizes jet correlations
- near side jets are a small $|\Delta \eta|$ correlation

minimizing jet contributions

Normal Jet

Correlations

- normal two particle correlations: look at as high рт particles as possible
- minimizes combinatoric background, maximizes jet correlations
- near side jets are a small $|\Delta \eta|$ correlation
the plan: keep one particle at very low рт to maximize sensitivity to underlying event \& select as large $\Delta \eta$ as possible within midrapidity acceptance

centrality dependence of correlations

as a function of p_{T}

- keep one particle at $0.5-0.75 \mathrm{GeV} / \mathrm{c}$
- move other particle up in pT from $0.5-3.5 \mathrm{GeV} / \mathrm{c}$

as a function of p_{T}

- keep one particle at $0.5-0.75 \mathrm{GeV} / \mathrm{c}$
- move other particle up in pT from 0.5-3.5 GeV/c
> how much of this could be due to incomplete subtraction of the jets?

remaining jet effects

- vary the $|\Delta \eta|$ cut from 0.36-0.7
- saw no difference in the modulation

remaining jet effects

- vary the $|\Delta \eta|$ cut from 0.36-0.7
- saw no difference in the modulation
- look at the charge sign dependence:
- jet correlations are enhanced for opposite sign pairs and suppressed for same sign pairs

remaining jet effects

- vary the $|\Delta \eta|$ cut from 0.36-0.7
- saw no difference in the modulation
- look at the charge sign dependence:
- jet correlations are enhanced for opposite sign pairs and suppressed for same sign pairs

remaining jet effects

- vary the $|\Delta \eta|$ cut from 0.36-0.7
- saw no difference in the modulation
- look at the charge sign dependence:
- jet correlations are enhanced for opposite sign pairs and suppressed for same sign pairs

larger modulation with opposite sign pairs, however, same sign pairs show a significant signal

so, how big is this effect?

observe a significant modulation, increasing with рт up to about 1% for $1.5<\mathrm{pt}<2.5 \mathrm{GeV} / \mathrm{c}$
back to previous results

back to previous results

back to previous results

would a 1% modulation of the background be visible here?

back to previous results

would a 1% modulation of the background be visible here?

back to previous results

would a 1% modulation of the background be visible here?

NO! previous results not sensitive to this effect

single particle anisotropy

$$
\mathrm{c} 2(\mathrm{p}, \mathrm{a}, \mathrm{p}, \mathrm{~b})=\mathrm{s} 2(\mathrm{p} \mathrm{~T}, \mathrm{a}) \mathrm{s} 2(\mathrm{p}, \mathrm{~b})
$$

\rightarrow factorization assumption: two particle modulation is the product of the single particle anisotropies

single particle anisotropy

$$
\mathrm{c} 2\left(\mathrm{p}_{\mathrm{T}, \mathrm{a}, \mathrm{p}, \mathrm{~b}, \mathrm{~b}}\right)=\mathrm{s} 2\left(\mathrm{p}_{\mathrm{T}, \mathrm{a}}\right) \mathrm{s} 2(\mathrm{p}, \mathrm{~b})
$$

\rightarrow factorization assumption: two particle modulation is the product of the single particle anisotropies

larger anisotropy observed than at ATLAS!
pPb vs dAu

$\mathrm{d}+\mathrm{A}$ central collisions have much larger ε_{2} than $\mathrm{p}+\mathrm{A}$

comparison with hydro

initial entropy densitiy

apples to apples comparison

good agreement with hydro calculation done at 200 GeV for $0-5 \%$ centrality

dAu vs pPb

A. M. Sickles

what about the CGC?

good description of the ALICE data

what about the CGG?

good description of the ALICE data

- Fourier coefficients are not the natural framework for these results
- calculate a normalized associated yield, which we presently don't have

what about the CGC?

significant signal expected at RHIC!

WARNING!!

cannot compare directly to data! We measure a modulation relative to the combinatoric background, not all of which is included in this calculation!

ALICE sees v3 > 0, what about at RHIC?

conclusions

- quadrupole anisotropy seen in central dAu collisions at RHIC
- quadrupole anisotropy seen in central dAu collisions at RHIC
- magnitude larger than similar single seen in pPb collisions at LHC
- quadrupole anisotropy seen in central dAu collisions at RHIC
- magnitude larger than similar single seen in pPb collisions at LHC
- good agreement with a hydro calculation
- quadrupole anisotropy seen in central dAu collisions at RHIC
- magnitude larger than similar single seen in pPb collisions at LHC
- good agreement with a hydro calculation
- scaling by ε_{2} from Glauber MC can bring agreement with between LHC and RHIC data
- quadrupole anisotropy seen in central dAu collisions at RHIC
- magnitude larger than similar single seen in pPb collisions at LHC
- good agreement with a hydro calculation
- scaling by ε_{2} from Glauber MC can bring agreement with between LHC and RHIC data
- great example of the complementarity between RHIC \& LHC

conclusions

- quadrupole anisotropy seen in central dAu collisions at RHIC
- magnitude larger than similar single seen in pPb collisions at LHC
- good agreement with a hydro calculation
- scaling by ε_{2} from Glauber MC can bring agreement with between LHC and RHIC data
- great example of the complementarity between RHIC \& LHC
- geometry and collision energy differences provide constraints on theoretical explanations

conclusions

- quadrupole anisotropy seen in central dAu collisions at RHIC
- magnitude larger than similar single seen in pPb collisions at LHC
- good agreement with a hydro calculation
- scaling by ε_{2} from Glauber MC can bring agreement with between LHC and RHIC data
- great example of the complementarity between RHIC \& LHC
- geometry and collision energy differences provide constraints on theoretical explanations
> conditional yields, neutron tagging, centrality dependence coming soon!

going forward: dAu vs pAu

going forward: dAu vs pAu

going forward: dAu vs pAu

opportunity to constrain geometry effects within a single experiment!

extras

$0-20 \%$ central

- PHENIX central arm eta acceptance too small to get away from the jet contribution entirely
- jet fragmentation effects can be suppressed by looking at same sign pairs:

