Heavy Flavor Correlations @ PHENIX

Anne Sickles for the PHENIX Collaboration Brookhaven

Why Heavy Flavor?

- electrons from decay of heavy mesons are modified by the matter in heavy ion collisions
 - yields are suppressed
 - $v_2^{HF} > 0$
- heavy quarks interact with the matter (almost as much as light quarks)

Why Heavy Flavor?

٩A

- electrons from decay of heavy Ľ mesons are modified by the matter in heavy ion collisions
 - yields are suppressed
 - $v_2^{HF} > 0$
- heavy quarks interact with the matter (almost as much as light quarks)

two particle correlations can provide information about how the heavy quarks interact with the matter!

Light Jet Modifications

Heavy Flavor Correlations

- energy loss (where does the lost energy go?)
 - light quarks/gluons, charm, & bottom
- recombination/coalescence (Oh et al 0901.1382)
 - evidence for significant light baryons & meson production via recombination
- in medium formation/dissociation (Adil & Vitev PLB 649 139 (2007))
- jet medium interactions: ridge, shoulder
 - heavy flavor correlations offer a good test of ridge & shoulder models

Heavy Flavor via Semi-leptonic decays

$\uparrow \qquad \qquad$		
$\frac{1}{\mathbf{D}^0}$	Decay	Branching Ratio
C C	D [±] →e+X	16.0%
	D ⁰ →e+X	6.5%
$ \begin{array}{c} \mathbf{K} \\ \ell^{+} \\ \mathbf{V}_{\ell} \end{array} \mathbf{D}^{0} $		

- single particles: measure e[±] from D, B decay
- hadronic decays: large backgrounds

problem: how do you know if e[±] came from charm or bottom?

charm & bottom: theory

knowledge of relative c/b contributions crucial for understanding HF modifications in Au+Au collisions

Anne Sickles BNL February 6, 2009 W

Winter Workshop

what can experiment say?

idea: D→eKv, reconstruct eK invariant mass

- heavy meson decay: e & K have opposite signs
- like sign pairs approximate the background
- use simulations to get tagging efficiency for c & b

$$\epsilon_{data} \equiv \frac{N_{tag}}{N_{e(non-photonic)}} = \frac{N_{c \to tag} + N_{b \to tag}}{N_{c \to e} + N_{b \to e}}$$

$$\epsilon_{c} \equiv \frac{N_{c \to tag}}{N_{c \to e}}, \epsilon_{b} \equiv \frac{N_{b \to tag}}{N_{b \to e}}$$

$$\frac{N_{b \to e}}{N_{c \to e} + N_{b \to e}} = \frac{\epsilon_{c} - \epsilon_{data}}{\epsilon_{c} - \epsilon_{b}}$$
Y. Morino QMO

tagging efficiency

compare data to simulation, extract bottom contribution main uncertainty: production ratios (D⁺/D⁰, etc)

relative $b \rightarrow e$ contribution vs $p_{T,e}$

Heavy Quark Fragmentation

Light Quark Fragmentation

- fragmentation functions from e⁺e⁻ collisions
- most particles carry small fraction of jet energy

Particle Data Book

what about heavy quark jets?

• $c \rightarrow D$ fragmentation hard

• $b \rightarrow B$ fragmentation harder

Particle Data Book

...and the rest of jet energy?

de Florian et al PRD 76 074033 (2007)

- in Au+Au we want to study how heavy quark jets are modified by the matter
 - near side: extra momentum from energy loss? the ridge?
 - away side: shoulder structure? energy loss (& how does that compare to γ_{dir} -h and π^0 -h?)
- observable: eHF-h correlations as a function of PT,e & PT,h
- expectations: p+p measurements are an essential baseline

two types of electrons

Anne Sickles BNL February 6, 2009 Wint

Winter Workshop

separating the correlations

PHENIX, PRL 97 252002 (2006)

ephot-h correlations

$$Y_{e_{HF}-h} = \frac{(R_{HF}+1)Y_{e_{incl}-h} - Y_{e_{phot}-h}}{R_{HF}}$$

- photonic electrons: Dalitz decays and γ conversions
 - both from light mesons
- measure γ_{inc}-h correlations
 - use MC to map between
 e_{phot}(p_T) & γ_{inc}(p_T)

e_{phot}-h correlations (II)

- map between e_{phot}(p_T) & γ_{inc}(p_T)
 - conversions: use measured γ spectra & PHENIX GEANT implementation w/ real data cuts
 - Dalitz decays: use π⁰ spectra & get γ*
 (p_T) from e⁺e⁻ in decay
- both methods give similar results: dominated by e_{phot}(p_T) ~ γ_{inc}(p_T)
 - $\pi^0 \& \gamma$ spectra fall very steeply

үрт (GeV∕с)

$$Y_{e_{phot}-h}(p_{T,i}) = \sum_{j} w_i(p_{T,j}) Y_{\gamma-h}(p_{T,j})$$

einc-h correlations

adding ephot-h ...

heavy flavor correlations

near side widths

near side widths

 $\sigma_{HF} > \sigma_{phot}$: D/B decay kinematics

near side widths

 $\sigma_{HF} > \sigma_{phot}$: D/B decay kinematics good agreement with PYTHIA (charm production)

conditional yields

- near side: dominated by decays
- away side: fragmentation and decays
- reasonable agreement with PYTHIA

charm production subprocesses

most of the time a D is not balanced by a mid-rapidity D

Vitev et al PRD 74 054010 (2006)

comparison to light jets

comparison to light jets

PHENIX PRD 74 072002 (2006)

comparison to light jets

PHENIX PRD 74 072002 (2006)

eнF-h harder @ same pт,trig (≠рт,parton)

conclusions & outlook

HF correlations provide a new tool to study passage of fast parton through matter

- c/b ratio in p+p consistent with FONLL
 - this ratio crucial to understanding e± results in Au+Au
- e_{HF}-h conditional yields in p+p measured
 - method established to extract HF correlations
 - useful for testing charm fragmentation into hadrons
 - baseline for Au+Au results, being analyzed now

D/B in medium formation

Adil & Vitev PLB649 139 (2007)

PHENIX, PRC 78 014901 (2008), Noronha et al. arXiv:0807.1038, Neufeld arXiv:0807.2996

AdS/CFT: Correlations from Neck region

PHENIX, PRC 78 014901 (2008), Noronha et al. arXiv:0807.1038, Neufeld arXiv:0807.2996

PHENIX, PRC 78 014901 (2008), Noronha et al. arXiv:0807.1038, Neufeld arXiv:0807.2996

PHENIX, PRC 78 014901 (2008), Noronha et al. arXiv:0807.1038, Neufeld arXiv:0807.2996

Anne Sickles BNL February 6, 2009 Winter Workshop

