

The Lighter Side of Heavy Ions

News from p/d+A Collisions Anne M. Sickles, BNL March 10, 2014

The Lighter Side of Heavy Ions

News from p/d+A Collisions Anne M. Sickles, BNL March 10, 2014

The Lighter Side of Heavy Ions

News from p/d+A Collisions Anne M. Sickles, BNL March 10, 2014

why heavy ion collisions?

- study the phase structure of QCD
 - here we will focus on the high temperature side, but there are also exciting new investigations at lower temperatures and higher baryon densities
- quantitative understanding of the properties of QCD matter at extreme temperatures

Heavy Ion Programs at RHIC and LHC

strengths: collision system & energy versatility and long running times

2010 - present 2.76 TeV collision energy PbPb 5.02 TeV pPb pp @ multiple energies

strengths: excellent detectors and very high energy

Heavy Ion Programs at RHIC and LHC

strengths: collision system & energy versatility and long running times

2010 - present
2.76 TeV collision energy PbPb
5.02 TeV pPb
pp @ multiple energies

strengths: excellent detectors and very high energy

relativistic heavy ion collisions

quark gluon plasma

relativistic heavy ion collisions

quark gluon plasma

relativistic heavy ion collisions

quark gluon plasma

want to untangle QGP effects from effects of initial nucleus and hadronic matter

the aftermath

the aftermath

collision geometry

view: one nuclei going into the screen and one coming out

nucleon positions for the colliding nuclei for three different collisions

varying the distance between the nuclei, changes the shape and size of the region where the nuclei overlap

collision geometry

view: one nuclei going into the screen and one coming out

nucleon positions for the colliding nuclei for three different collisions

varying the distance between the nuclei, changes the shape and size of the region where the nuclei overlap

collision geometry

view: one nuclei going into the screen and one coming out

nucleon positions for the colliding nuclei for three different collisions

varying the distance between the nuclei, changes the shape and size of the region where the nuclei overlap

collision geometry → measured particles

initial collision geometry

measured hadron distributions

collision geometry → measured particles

initial collision geometry

measured hadron distributions

the shape of the initial collision geometry is imprinted on the final particle distributions

- large observed anisotropies → strong interactions:
 - · fluid behavior, hydrodynamics
- larger pressure gradients push more particles out in the x direction than in y

- large observed anisotropies → strong interactions:
 - · fluid behavior, hydrodynamics
- larger pressure gradients push more particles out in the x direction than in y

- large observed anisotropies → strong interactions:
 - fluid behavior, hydrodynamics
- larger pressure gradients push more particles out in the x direction than in y

- large observed anisotropies → strong interactions:
 - · fluid behavior, hydrodynamics
- larger pressure gradients push more particles out in the x direction than in y

the viscosity of the QGP

- what kind of fluid is the QGP?
 - more like water or honey?
- characterize by ratio of shear
 viscosity to entropy density: η/s
 - we know that η/s(QGP) is very small near the critical T
 - but how does that change with temperature?

each collision is unique

nucleon distributions for 3 single collisions (xy-plane)

each collision evolves in isolation without knowing what the "typical" collision is

each collision is unique

nucleon distributions for 3 single collisions (xy-plane)

each collision evolves in isolation without knowing what the "typical" collision is

not just v_2 describing $cos2\Phi$, but v_n :

$$\frac{dN}{d\phi} \propto 1 + \sum_{n=0}^{\infty} 2v_n \cos n \left(\phi - \Psi_n \right)$$

two particle correlations

$$\frac{dN}{d\phi} \propto 1 + \sum_{n=0}^{\infty} 2v_n \cos n \left(\phi - \Psi_n\right)$$

$$\frac{dN_{AB}}{d\Delta\phi}\propto 1+\sum^{n}2v_{n,A}v_{n,B}\cos\left(n\Delta\phi\right)$$

two particle correlations

jets in pp collisions

flow

single particles

$$rac{dN}{d\phi} \propto 1 + \sum_{n=0}^{n} 2v_n \cos n \ (\phi - \Psi_n)$$
 pairs of particles

$$\frac{dN_{AB}}{d\Delta\phi}\propto 1+\sum^{n}2v_{n,A}v_{n,B}\cos\left(n\Delta\phi\right)$$

flow correlations should be long range η

correlations in PbPb

correlations in PbPb

correlations in PbPb

ridge: v_N & two particle correlations

$$\frac{dN_{AB}}{d\Delta\phi}\propto 1+\sum^{n}2v_{n,A}v_{n,B}\cos\left(n\Delta\phi\right)$$

ridge: v_N & two particle correlations

evidence for many higher order terms in particle correlations

state of the art hydrodynamic calculations

3 +1d viscous hydrodynamics

quantitative description of v_1 - v_5 at both RHIC and LHC sensitivity to η/s

pA physics

· isolate QGP effects from something present in the incoming nuclei

saturation of low x gluons

basic idea: the number of gluons increases quickly with decreasing x. At some point there are so many gluons that the recombination rate becomes significant, saturating the

distribution

in a large nucleus in high energy collisions, this happens more readily because the nucleons overlap, increasing the density

a closer look at pPb

a closer look at pPb

v₂ & v₃ in pPb collisions

ATLAS PRL 110 102303 22

v₂ & v₃ in pPb collisions

very similar to AA results

ATLAS PRL 110 102303 22

v₂ & v3 in pPb collisions

very similar to AA results

are the pA and AA v2 related to the same physics?

ATLAS PRL 110 102303 22

ridge in pp/pPb from color glass condensate?

Color Glass Condensate: calculational framework for saturation

good description of the data in pPb

geometry in AA & pA

AA impact parameter + fluctuations

pA

fluctuations

variation of the small nucleus

control the collision geometry by varying the small nucleus

variation of the small nucleus

control the collision geometry by varying the small nucleus

does v2 reflect the geometry of the initial state in p/d+A as in A+A?

what can RHIC add?

RHIC had huge d+Au sample 25x smaller collision energy than the LHC

PHENIX

- charged hadrons
 - · $|\eta| < 0.35$
 - · $|\Delta \eta| < 0.7$
- centrality determined by charged particles in the Au going direction: 3 < lηl < 4
- 1.6B minimum bias events

two particle correlations in dAu

two particle correlations in dAu

two particle correlations in dAu

centrality dependence

v2: pPb & dAu

rapidity separated correlations

Muon Piston Calorimeters

both d-going & Augoing directions $3 < |\eta| < 4$

long range correlations in dAu

long range correlations in dAu

long range correlations in dAu

v₂ in dAu compared to hydro. calculations

shapes of pA & dA

pA, small ε_2

Glauber Monte Carlo used to generate single event initial energy density distributions used to determined $\langle \epsilon_n \rangle$ values for event selections

dAu, pPb, AuAu & PbPb

single trend, AA data understood as initial geometry + hydrodynamics

variation of the small nucleus

control the collision geometry by varying the small nucleus

importance of v₃

if: $\varepsilon_3 \rightarrow \cos 3\Delta\Phi$ modulation

direct confirmation of hydrodynamic behavior in small systems

new handle on viscosity

higher moments, more sensitive to viscous effects

jet quenching

jets act as an external probe of the QGP and lose energy as they go through the matter quenching is sensitive to the **matter** itself and how **long** the jet is in the matter

jet quenching

jets act as an external probe of the QGP and lose energy as they go through the matter quenching is sensitive to the matter itself and how long the jet is in the matter

observed in AA

 $R_{AA} =$

expectation from pp

dAu: no quenching

AuAu: quenching

particle species dependence

charged hadron enhancement in protons

A. M. Sickles

...and heavy flavor

electrons from heavy flavor decays

...and heavy flavor

electrons from heavy flavor decays

l (l - - - - O

1.2 1.4 1.6 1.8 2 p_{_} (GeV/c) 0.2 0.4 0.6 0

what about radial flow?

the Blast-Wave: outward velocity boost, from a hydrodynamic source

Schnedermann, Sollfrank, & Heinz PRC48 2462 (1993)

blast-wave fit to dAu data

0-20% d+Au simultaneous fit to π , K, p $\beta_{max} = 0.70$ $T_{fo} = 139 MeV$

large enhancement of heavy mesons!

and for the electrons?

another flow effect? charm and bottom separated measurements key to clarifying

data: PHENIX PRL 109 242301 AMS: PLB 731 51 (2014)

AA collisions: quenching depends on L

AA collisions: quenching depends on L

a lot of quenching

AA collisions: quenching depends on L

a little quenching

a lot of quenching

AA collisions: quenching depends on L

a little quenching

a lot of quenching

could something similar happen in dA?

AA collisions: quenching depends on L

a little quenching

a lot of quenching

could something similar happen in dA?

geometrical dependence might be observable even though we know the overall level of quenching is small in dAu

recent calculations (Zhang & Liao, 1311.5463), show ~10x bigger effect in dAu than pPb

investigating initial state of the nucleus?

investigating initial state of the nucleus?

investigating initial state of the nucleus?

eRHIC

upgrade to allow electrons at RHIC timescale ~ 2025

pushing the limits of the QGP

- RHIC and the LHC are pushing the size limits of the quark gluon plasma
 - suggestive of evolution, rather than a transition, from big to small systems
 - looking forward to new measurements very soon to support/challenge this interpretation and quantitative understanding

· backups

centrality
dependence
consistently
described by
cos2Δφ shape
evidence for
double ridge

centrality
dependence
consistently
described by
cos2Δφ shape
evidence for
double ridge

but is this just an artifact of the small $|\Delta\eta|$ acceptance?

RHIC comparisons

STAR v₂: ~13±1% 1<p_T<3GeV/c good consistency at RHIC!

PHENIX: 1303.1794 F. Wang IS2013

scaling with overlap area?

- approximate scaling with 1/S dN_{ch}/dη
 - significant uncertainties due to nucleon representations in d+Au
 - n.b. not directly comparable to other 1/S plots, here v_2 at fixed p_T !

A. M. Sickles

v₃ at RHIC?

no evidence for significant v3, consistent with hydro expectations

PHENIX: 1303.1794

nucleon positions to energy density

single event initial energy density

nucleons: Gaussians, $\sigma = 0.4 \text{fm}$

nucleon positions to energy density

single event initial energy density

nucleons: Gaussians, $\sigma = 0.4 \text{fm}$

subnucleonic fluctuations: IP-Glasma model

