

The Lighter Side of Heavy lons News from p/d+A Collisions Anne M. Sickles, BNL March 10, 2014

The Lighter Side of Heavy lons News from p/d+A Collisions

Anne M. Sickles, BNL March 10, 2014

The Lighter Side of Heavy lons
News from p/d+A Collisions
Anne M. Sickles, BNL
March 10, 2014

why heavy ion collisions?

- study the phase structure of QCD
- here we will focus on the high temperature side, but there are also exciting new investigations at lower temperatures and higher baryon densities
- quantitative understanding of the properties of QCD matter at extreme temperatures

Heavy Ion Programs at RHIC and LHC

2000 - present
7.7-510 GeV collision energy
$\mathrm{AuAu}, \mathrm{dAu}, \mathrm{pp}, \mathrm{CuCu}, \mathrm{UU}, \mathrm{CuAu}$
strengths: collision system \& energy versatility and long running times

2010 - present
2.76 TeV collision energy PbPb
5.02 TeV pPb
pp @ multiple energies
strengths: excellent detectors and very high energy

Heavy Ion Programs at RHIC and LHC

2000 - present
7.7-510 GeV collision energy

AuAu dAu, pp, $\mathrm{CuCu}, \mathrm{UU}, \mathrm{CuAu}$
strengths: collision system \& energy versatility and long running times

2010 - present
2.76 TeV collision entergy PbPb 5.02 TekpPb
pp @ multiple energies
strengths: excellent detectors and very high energy

quark gluon plasma

relativistic heavy ion collisions

quark gluon plasma

relativistic heavy ion collisions

quark gluon plasma

want to untangle QGP effects from effects of initial nucleus and hadronic matter
the aftermath

the aftermath

collision geometry

view: one nuclei going into the screen and one coming out
nucleon positions for the colliding nuclei for three different collisions

$\mathrm{y}_{\mathrm{x}}^{\mathrm{L}}$
varying the distance between the nuclei, changes the shape and size of the region where the nuclei overlap

collision geometry

view: one nuclei going into the screen and one coming out
nucleon positions for the colliding nuclei for three different collisions

$\mathrm{y}_{\mathrm{x}}^{\mathrm{L}}$
varying the distance between the nuclei, changes the shape and size of the region where the nuclei overlap

collision geometry

view: one nuclei going into the screen and one coming out
nucleon positions for the colliding nuclei for three different collisions

$\mathrm{y}_{\mathrm{x}}^{\mathrm{L}}$
varying the distance between the nuclei, changes the shape and size of the region where the nuclei overlap

collision geometry \rightarrow measured particles

initial collision geometry
measured hadron distributions

collision geometry \rightarrow measured particles

initial collision geometry
measured hadron distributions

the shape of the initial collision geometry is imprinted on the final particle distributions

strong interactions

- large observed anisotropies \rightarrow strong interactions:
- fluid behavior, hydrodynamics
- larger pressure gradients push more particles out in the x direction than in y

strong interactions

gradual
pressure change

- large observed anisotropies \rightarrow strong interactions:
- fluid behavior, hydrodynamics
- larger pressure gradients push more particles out in the x direction than in y

strong interactions

gradual
pressure
change

- large observed anisotropies \rightarrow strong interactions:
- fluid behavior, hydrodynamics
- larger pressure gradients push more particles out in the x direction than in y

strong interactions

gradual
pressure

$d N$

$$
\frac{1 v}{d \phi}=1+2 v_{2} \cos 2 \phi
$$ change

- large observed anisotropies \rightarrow strong interactions:
- fluid behavior, hydrodynamics
- larger pressure gradients push more particles out in the x direction than in y

the viscosity of the QGP

- what kind of fluid is the QGP?
- more like water or honey?
- characterize by ratio of shear viscosity to entropy density: η / s
- we know that $\eta / s(Q G P)$ is very small near the critical T
- but how does that change with temperature?

each collision is unique

nucleon distributions for 3 single collisions (xy-plane)

each collision evolves in isolation without knowing what the "typical" collision is

each collision is unique

nucleon distributions for 3 single collisions (xy-plane)

each collision evolves in isolation without knowing what the "typical" collision is not just v_{2} describing $\cos 2 \Phi$, but v_{n} :

$$
\frac{d N}{d \phi} \propto 1+\sum^{n} 2 v_{n} \cos n\left(\phi-\Psi_{n}\right)
$$

two particle correlations

$$
\begin{aligned}
\frac{d N}{d \phi} & \propto 1+\sum^{n} 2 v_{n} \cos n\left(\phi-\Psi_{n}\right) \\
\frac{d N_{A B}}{d \Delta \phi} & \propto 1+\sum^{n} 2 v_{n, A} v_{n, B} \cos (n \Delta \phi)
\end{aligned}
$$

two particle correlations

jets in pp collisions

flow correlations should be long range η

correlations in PbPb

correlations in PbPb

correlations in PbPb

ridge: v_{N} \& two particle correlations

ridge: v_{N} \& two particle correlations

evidence for many higher order terms in particle correlations

state of the art hydrodynamic calculations

$3+1 d$ viscous hydrodynamics

quantitative description of $\mathrm{v}_{1}-\mathrm{v}_{5}$ at both RHIC and LHC sensitivity to η / s

pA physics

- isolate QGP effects from something present in the incoming nuclei

saturation of low x gluons

- basic idea: the number of gluons increases quickly with decreasing x. At some point there are so many gluons that the recombination rate becomes significant, saturating the distribution

in a large nucleus in high energy collisions, this happens more readily because the nucleons overlap, increasing the density

a closer look at pPb

peripheral collisions central collisions

jets

jets + flow

a closer look at pPb

$\mathrm{v}_{2} \& \mathrm{v} 3$ in pPb collisions

$\mathrm{v}_{2} \& \mathrm{v} 3$ in pPb collisions

very similar to AA results

$\mathrm{v}_{2} \& \mathrm{v} 3$ in pPb collisions

very similar to $A A$ results

are the pA and AA v 2 related to the same physics?

ridge in $\mathrm{pp} / \mathrm{pPb}$ from color glass condensate?

Color Glass Condensate: calculational framework for saturation

good description of the data in pPb

geometry in AA \& pA

AA

impact parameter + fluctuations

pA
fluctuations

variation of the small nucleus

dA

control the collision geometry by varying the small nucleus

variation of the small nucleus

dA

control the collision geometry by varying the small nucleus

 does v2 reflect the geometry of the initial state in $\mathrm{p} / \mathrm{d}+\mathrm{A}$ as in $\mathrm{A}+\mathrm{A}$?
what can RHIC add?

RHIC had huge d+Au sample $25 x$ smaller collision energy than the LHC

PHENIX

- charged hadrons
- $|\eta|<0.35$
- $|\Delta \eta|<0.7$
- centrality determined by charged particles in the Au going direction: $3<|\eta|<4$
- 1.6B minimum bias events

two particle correlations in dAu

two particle correlations in dAu

two particle correlations in dAu

centrality dependence

v2: pPb \& dAu

rapidity separated correlations

Muon Piston Calorimeters
both d-going \& Augoing directions

$$
3<|\eta|<4
$$

Central Magnet

Side View

long range correlations in dAu

PHOBOS PRC72 031901

long range correlations in dAu

PHOBOS PRC72 031901

long range correlations in dAu

v_{2} in dAu compared to hydro. calculations

shapes of pA \& dA

pA, small ε_{2}

dA , large ε_{2}

Glauber Monte Carlo used to generate single event initial energy density distributions used to determined $<\varepsilon_{n}>$ values for event selections

$d A u, p P b, A u A u \& P b P b$

single trend, AA data understood as initial geometry + hydrodynamics

variation of the small nucleus

pA

small ε_{2}
dA

${ }^{3} \mathrm{HeA}$

large $\varepsilon 3$ small $\varepsilon 3$

$$
\varepsilon_{n}=\frac{\sqrt{\left\langle r^{2} \cos n \phi\right\rangle^{2}+\left\langle r^{2} \sin n \phi\right\rangle^{2}}}{\left\langle r^{2}\right\rangle}
$$

control the collision geometry by varying the small nucleus

importance of v_{3}

if: $\varepsilon_{3} \rightarrow \cos 3 \Delta \Phi$ modulation direct confirmation of hydrodynamic behavior in small systems
new handle on viscosity
higher moments, more sensitive to viscous effects

jet quenching

jets act as an external probe of the QGP and lose energy as they go through the matter quenching is sensitive to the matter itself and how long the jet is in the matter

ATLAS PRL 105252303 (2011)

jet quenching

jets act as an external probe of the QGP and lose energy as they go through the matter quenching is sensitive to the matter itself and how long the jet is in the matter

particle species dependence

charged hadron enhancement in protons

...and heavy flavor

electrons from heavy flavor decays

...and heavy flavor

electrons from heavy flavor decays

$\mathrm{Au}+\mathrm{Au}$

what about radial flow?

the Blast-Wave: outward velocity boost, from a hydrodynamic source

blast-wave fit to dAu data

0-20\% d+Au simultaneous fit to π, K, p
$$
\beta_{\max }=0.70
$$
$$
\mathrm{T}_{\text {fo }}=139 \mathrm{MeV}
$$

large enhancement of heavy mesons!

and for the electrons?

another flow effect?
charm and bottom separated measurements key to clarifying

AA collisions: quenching

 depends on L

AA collisions: quenching

 depends on L
a lot of quenching

AA collisions: quenching

 depends on L
a little quenching
a lot of quenching
jets in dAu

AA collisions: quenching depends on L

a little quenching
a lot of quenching
could something similar happen in dA?

AA collisions: quenching depends on L

a little quenching
a lot of quenching
could something similar happen in dA?

geometrical dependence might be observable even though we know the overall level of quenching is small in dAu
recent calculations (Zhang \& Liao, 1311.5463), show
$\boldsymbol{\sim 1 0 x}$ bigger effect in dAu than pPb
investigating initial state of the nucleus?

investigating initial state of the nucleus?

investigating initial state of the nucleus?

eRHIC

upgrade to allow electrons at RHIC timescale ~ 2025

pushing the limits of the QGP

- RHIC and the LHC are pushing the size limits of the quark gluon plasma
- suggestive of evolution, rather than a transition, from big to small systems
- looking forward to new measurements very soon to support/challenge this interpretation and quantitative understanding

- backups
centrality dependence consistently described by $\cos 2 \Delta \phi$ shape evidence for double ridge

PHENIX: 1303.1794
centrality dependence consistently described by $\cos 2 \Delta \phi$ shape evidence for double ridge but is this just an artifact of the small $|\Delta \eta|$ acceptance?

PHENIX: 1303.1794

results from STAR

results from STAR

$\|\Delta \eta\|<0.3$	$0.5<\|\Delta \eta\|<0.7$	$1.4<\|\Delta \eta\|<1.8$

$\Delta \phi$

$\Delta \phi$

central - peripheral

$\Delta \phi$

$\Delta \phi$

$\Delta \phi$
F. Wang IS2013

$$
\begin{aligned}
& \text { STAR } \mathrm{v}_{2}: \sim 13 \pm 1 \% 1<\mathrm{pT}_{1}<3 \mathrm{GeV} / \mathrm{c} \\
& \text { good consistency at } \mathrm{RHIC} \text { ! }
\end{aligned}
$$

scaling with overlap area?

- approximate scaling with $1 / \mathrm{S} \mathrm{dN}_{\mathrm{ch}} / \mathrm{d} \mathrm{\eta}$
- significant uncertainties due to nucleon representations in d+Au
- n.b. not directly comparable to other $1 / S$ plots, here v_{2} at fixed p_{T} !

v_{3} at RHIC?

no evidence for significant $v 3$, consistent with hydro expectations

nucleon positions to energy density

single event initial energy density
nucleons: Gaussians, $\sigma=0.4 \mathrm{fm}$

nucleon positions to energy density

single event initial energy density
nucleons: Gaussians, $\sigma=0.4 \mathrm{fm}$

subnucleonic fluctuations: IP-Glasma model

