The Smallest Drops of the Hottest Matter Exploring the Small Size Limit of the Quark Gluon Plasma Anne M. Sickles, University of Illinois Urbana-Champaign Sambamurti Memorial Lecture, July 15, 2014

how hot?

80 ° F

2000 ° F

28M ° F

quark-gluon plasma

no photo available

5T ° F

The nucleus

- >99% of the mass of atoms, and thus normal matter, is in the nucleus
- composed of protons and neutrons, *nucleons*
- these nucleons are held together by the strong force
 - one of the 4 fundamental forces of nature
 - characterized by very strong short range interactions

and what's inside protons and neutrons?

fundamental particles which interact via the strong force

quarks and gluons

confinement

quarks & gluons are bound inside color neutral particles

valence quarks define the hadron also a sea of (anti)quarks & gluons

confinement makes the strong force hard to study because the details are locked inside the protons and neutrons

strong force at high temperature

a system that's hot and dense enough for the quarks and gluons to not be confined anymore

nucleus (many protons & neutrons)

+ energy

strong force at high temperature

to create a system that's hot and dense enough for the quarks and gluons to not be confined anymore: the **quark gluon plasma**

Colliders at BNL and CERN

RHIC

0.200 TeV collision energy Au+Au

2.76 TeV collision energy Pb+Pb

relativistic heavy ion collisions

Quark Gluon Plasma

lasts for a billionth of a trillionth of a second and billion times smaller than a pixel on an iPhone display

when two individual nuclei collide they create a droplet of this matter this process happens thousands of times a second

we watch the collisions, we cannot do anything external to it

hundreds or thousands of **new** particles are created in each collision

 $E = mc^2$

these particles provide the only window into the earlier stages of the collision we look at each collision individually, but measure billions of collisions!

RHIC @ Brookhaven

PHENIX Detector

the aftermath of a collision

the aftermath of a single collision

collision geometry

view: one nuclei going into the screen and one coming out

varying the distance between the nuclei, changes the shape and size of the region where the nuclei overlap

the parts of the nuclei that don't overlap continue on and don't play a role

counting particles

collision geometry

more particles come out the long side than the short side!

interactions are important

liquid rather than a gas

characterizing a liquid

liquids flow

•

low viscosity

high viscosity

liquid QGP

QGP flows well!

 $\phi - \psi_2$ [rad]

low viscosity

 $\eta/s(QGP) < 5 (1/4\pi)$

string theory calculation: universal minimum $\eta/s > 1/4\pi$

determining η/s(QGP) is very important

 $\eta/s > 25 (1/4\pi)$

shape changes and particle distributions

isolating shape effects

characterizing particle distributions

v₂ is the strength of the modulation

v₂ in heavy ion collisions

quantifying shapes

eccentricity (ϵ_2) is related to how elongated any shape is

ratio: v_2 / ϵ_2

number of produced particles

relationship between geometry (ε₂) and v₂ is a signature of small viscosity QGP

How Small can the Quark Gluon Plasma Be?

why take something so small and make it smaller?

 changing the shape and size of the QGP help to measure the viscosity

why take something so small and make it smaller?

- \cdot is a QGP this small possible?
- could be an extreme variation of the size and time evolution from heavy ion collisions

v2 in p+Pb collisions @ the LHC

big vs small collisions

can we have a collision with large eccentricity, but similar size to p+Pb?

varying the small nucleus

deuteron (d): 1 proton and 1 neutron

which way does the ellipse go?

in any given event, we can't control it and it's hard to measure for these small systems

looking for v2 in d+Au

also, there are lots of reasons for particles to be correlated

correlations between pairs of particles

each particle knows something about the collision orientation, but the precision is low

hunting down the signal

v_2 / ε_{2} , expectations in d+Au

ALICE PLB 719 29 (2013) ATLAS PRL 110 182302 (2013)

 V_2 / ε_2

PHENIX PRL 111 212301 (2013) ALICE PLB 719 29 (2013) ATLAS PRL 110 182302 (2013)

a small QGP?

continuous behavior from big to small collisions

a small QGP?

continuous behavior from big to small collisions

particle distributions reflect initial shape

in big & small collisions...

each nucleus is a little different

200 protons and neutrons move around within the nucleus

•

each collision is unique

shape control

small ϵ_2

large ε_2

large ε₃

small ε_3

a triangular nucleus?

deuteron: 1 proton, 1 neutron helium 3 (³He): 2 protons, 1 neutron

³He+Au

very successful 3He+Au run concluded last week, analysis in progress!

jets in proton-proton collisions

probing the QGP with jets

p+p collisions

probing the QGP with jets

jet quenching

where does the energy not found in the jets end up? what does that tell us about the matter we're studying?

jet detectors

PHENIX

•

٠

- between RHIC & LHC initial QGP temperature is changed
- what does the combination of flow and jets tell us about how the QGP works?

exploring the strong force

- creating a picture of the quark-gluon plasma by using the geometry and variations of the nuclei collided at RHIC and the LHC
 - very small nuclei are providing a unique control of the geometry
 - excited to be able to fully exploit this technique at RHIC with p+Au, d+Au, and 3He+Au collisions soon!

acknowledgements

- all the members of the PHENIX Collaboration
- my colleagues at BNL
- funded through DOE Office of Science

investigating initial state of the nucleus?

From AGS

electrons are point-like particles

eRHIC

upgrade to allow electrons at RHIC timescale ~ 2025