proton & deuteron nucleus collisions

Anne M. Sickles Brookhaven

why p+A collisions?

initial nuclei hot nuclear matter

hot nuclear matter created from initial nuclei

hard probe rates

hard probe rates nearly unmodified from Ncoll scaling both in d+Au and p+Pb at midrapidity

jets...new this Quark Matter

same conclusion from reconstructed jets at the LHC

Perepelitsa, Appelt, Aiola

Appelt, Aiola, Balek

different impressions between CMS/ATLAS & ALICE data

Appelt, Aiola, Balek

- different impressions between CMS/ATLAS & ALICE data
- big caveat: no pp reference at 5TeV (will be wanted for HI reference anyway)!
 - much of the difference ALICE/CMS difference is in the reference (see E. Appelt (CMS))

•

- different impressions between CMS/ATLAS & ALICE data
- big caveat: no pp reference at 5TeV (will be wanted for HI reference anyway)!

٠

•

much of the difference ALICE/CMS difference is in the reference (see E. Appelt (CMS))

7

Perepelitsa, Campbell

8

8

Aiola, Andrei

enhanced protons

Campbell, Andrei 9

enhanced protons

9

extra baryons don't seem to be in the jets...

11

PLB 728 25 (201) Lett. B728, 25-38

reasonably good description at RHIC and the LHC

reasonably good description at RHIC and the LHC

central d+Au: simultaneous fit to π , K, p $<\beta>=0.46$ $T_{fphys: Rev 2000}$ Andrei

expectations from Blast Wave for heavy mesons in d+Au

data: PHENIX PRL 109 242301 AMS: PLB 731 51 (2014)

expectations from Blast Wave for heavy mesons in d+Au

data: PHENIX PRL 109 242301 AMS: PLB 731 51 (2014)

Lim, S. Li ₁₃

ALICE 1.6 Average D^0 , D^+ , D^{*+}

a smaller effect at the LHC could be due to the harder initial spectrum

O ALICE LO Average D⁰, D⁺, D^{*+}

away from midrapidity

μ : 1.4 < $|\eta|$ < 2.0

μ : 1.4 < $|\eta|$ < 2.0

enhancement larger than EPS09

μ : 1.4 < $|\eta|$ < 2.0

Lim

η

μ : 1.4 < $|\eta|$ < 2.0

Lim

14

η

μ : 1.4 < $|\eta|$ < 2.0

Lim

η

p-going

Pb-going

similar results from ALICE, perhaps slightly smaller A-going enhancement

S. Li

- many features of identified particles at moderate and low p_T spectra are suggestive of what has been observed in A+A collisions at both RHIC and the LHC
- how are these particles correlated with each other?

QM2014: wealth of new measurements vigorous discussion about methods & interpretation focus on methods, p_T reach, particle ID

cumulants

PbPb

pPb

v2 from cumulants smaller than 2-particle correlations no change in v2 for 4,6,8 part. cumulants

Huang, Y. Li₉

Huang, Y. Li₉

Huang, Y. Li₉

recoil subtraction

Radhadrishnan, Y. Li

recoil subtraction

 α accounts for differences in the jets between peripheral and central, sizable effect at high p_T

Radhadrishnan, Y. Li

recoil subtraction—STAR

seems to make a bigger difference for STAR many different details here (which matter!) great to see ^{2014 May} centrality, p_T, etc dependence

mass dependent flow

0.25 0-5% d+Au 200 GeV pion proton 0.20 0.15 ~~~ 0.10 0.05 PHENIX: 1404.7461 ^{1.5} ^{2.0} p₊ (GeV/c) 0.5 2.5 0.0 3.0 3.5 1.0

mass differences seen: lower v_2 for heavier particles at low p_T , crossing at higher p_T

Milano, Huang, Sharma

mass dependent flow

MC Glauber IC $\eta/s = 1/4\pi$ $\tau_0 = 0.5 \text{ fm/c}$ $T_f = 170 \text{MeV}$ cascade calculations: P. Romatschke

what can we learn by the successes and failures of hydro calculations in these very small systems?

Huang, Milano

³He+Au:

³HeA: variation of the system geometry

calculations: P. Romatschke (CD parallel), Nagle et al: 1312.4565

³He+Au:

calculations: P. Romatschke (CD parallel), Nagle et al: 1312.4565

linking geometry to correlations?

linking geometry to correlations?

looking forward to p+Au and 3He+Au measurements at RHIC in the next year

linking geometry to correlations?

looking forward to p+Au and 3He+Au measurements at RHIC in the next year

in addition to new collision systems, detector upgrades to both STAR & PHENIX will provide big improvements on existing d+Au measurements (silicon, MTD, MPC-EX)

flow in pA systems?

- \cdot the soft sector of pA shares a lot of features with AA
- that doesn't necessarily mean we have created mini-QGPs in pA systems
 - and if we have that doesn't necessarily mean that hydrodynamics is the only relevant physics
- however, if flow-like signals are so generic, how does that feed back into our understanding of AA collisions?

For myself, it's a great time to be an experimentalist!

pA @ QM2014

- huge surprises since Quark Matter 2012
 - both for hard and soft physics
 - \cdot a large fraction of the new results here are from pA
 - absolutely impossible to cover them all in 25 minutes!
- p+Pb at the LHC has produced a wealth of very interesting measurements
- RHIC is looking forward to new data in pA very soon
- interactions between all the experimental collaborations and the theory community moving our understanding forward

acknowledgements

- ALICE, ATLAS, CMS, PHENIX & STAR (especially the conveners) for providing the plots
- all the experimental parallel speakers for their clear presentations
- many, many people for their discussions

backups

Associated Particle: Positive vs Negative

what is the correlation between FTPC & ZDC centrality?

long range correlations in dAu

long range correlations in dAu

long range correlations in dAu

