The Next Decade of Physics with PHENIX

Anne M. Sickles for the PHENIX Collaboration

http://www.phenix.bnl.gov/phenix/WWW/docs/decadal/2010/ phenix_decadal10_full_refs.pdf

• RHIC: produce & study dense QCD matter

arXiv:1105.3928, PRC82 011902, PRL104 132301 May 26, 2011 2

• RHIC: produce & study dense QCD matter

0

(d)

0

Ժ

• RHIC: produce & study dense QCD matter

(d)

0

arXiv:1105.3928, PRC82 011902, PRL104 132301 May 26, 2011 2

Փ

A. M. Sickles

• RHIC: produce & study dense QCD matter

(d)

Փ

arXiv:1010.1246, PRL98 172301, PRL103 082002

arXiv:1010.1246, PRL98 172301, PRL103 082002

arXiv:1010.1246, PRL98 172301, PRL103 082002

• are quarks strongly coupled to the QGP at all distance scales?

- are quarks strongly coupled to the QGP at all distance scales?
- what are the detailed mechanisms for parton-QGP interactions and responses?

- are quarks strongly coupled to the QGP at all distance scales?
- what are the detailed mechanisms for parton-QGP interactions and responses?
- are there quasiparticles at any scale?

- are quarks strongly coupled to the QGP at all distance scales?
- what are the detailed mechanisms for parton-QGP interactions and responses?
- are there quasiparticles at any scale?
- is there a relevant screening length in the QGP?

- are quarks strongly coupled to the QGP at all distance scales?
- what are the detailed mechanisms for parton-QGP interactions and responses?
- are there quasiparticles at any scale?
- is there a relevant screening length in the QGP?
- how is rapid equilibration achieved?

Questions

Quarks strongly coupled Interaction mechanisms

Quasiparticles in medium

Screening Length

Thermal Behavior Thermalization time

$PHENIX \rightarrow sPHENIX$

PHENIX \rightarrow sPHENIX

PHENIX \rightarrow sPHENIX

plan 1ENIZ

maintain PHENIX high rate capability

GEM-Tracker

- record lots of heavy ion data without rare triggers ٠
- retain current (future) silicon vertex detectors (VTX, FVTX) ٠
- large uniform acceptance •
- hadronic calorimetry at midrapidity •
 - first at RHIC ٠
 - provides the jet resolution & efficiency to extend to high p_T ٠
- forward detectors for useful for spin, asymmetric collisions & e-p/e-A, A-A •

I & 2 particles @ LHC

I & 2 particles @ LHC

I & 2 particles \bigcirc RHIC 1.21.2

jets @ RHIC

I & 2 particles @ LHC

- how do the jet modifications compare between collision energies?
- softer underlying event allows measurements of lower energy jets
- dijets with similar asymmetry & very different jet energy at RHIC and LHC would give insight into energy loss mechanisms
- collision system versatility at RHIC
- cold nuclear matter effects

rates & acceptance

rates & acceptance

rates & acceptance

- RHIC luminosities: 20 week Au+Au run \rightarrow 50B events
 - 25B minimum bias events
- allows not only jet measurements, but di-jet, jet shapes, quarkonia, heavy flavors...

- jet correlations & asymmetric jets require high energy, $\sim 60 \text{GeV}$
- tracking background limits efficiency & resolution at high energy
- comparable measurements between RHIC & LHC

Tracking + EMCal

- jet correlations & asymmetric jets require high energy, $\sim 60 \text{GeV}$
- tracking background limits efficiency & resolution at high energy
- comparable measurements between RHIC & LHC

- jet correlations & asymmetric jets require high energy, ${\sim}60 {\rm GeV}$
- tracking background limits efficiency & resolution at high energy
- comparable measurements between RHIC & LHC

- jet correlations & asymmetric jets require high energy, ${\sim}60 {\rm GeV}$
- tracking background limits efficiency & resolution at high energy
- comparable measurements between RHIC & LHC

quarkonia

- measurements of J/ψ , ψ' , χ_c , & Y states in a variety of systems
- quarkonia production, cold nuclear matter effects, final state effects

geant 4 simulations

reasonable EMCal occupancy even @ R=60cm

Energy Threshold (MeV)	Layer 1 Occupancy	Layer 2 Occupancy
0	26%	49%
5	15%	22%
10	12%	20%
20	10%	15%
30	7%	12%
40	6%	10%
50	5%	8%

- heavy ions: answer the compelling questions raised by the first 10 years of RHIC running
- Are quarks strongly coupled to the QGP at all distance scales?
- What are the detailed mechanisms for parton-QGP interactions and responses?
- Are there quasiparticles at any scale?
- Is there a relevant screening length in the QGP?
- How is rapid equilibration achieved?

- heavy ions: answer the compelling questions raised by the first 10 years of RHIC running
- Are quarks strongly coupled to the QGP at all distance scales?
- What are the detailed mechanisms for parton-QGP interactions and responses?
- Are there quasiparticles at any scale?
- Is there a relevant screening length in the QGP?
- How is rapid equilibration achieved?
- p-p & d-A:
- Drell-Yan
- ΔG using di-jets and γ -jets
- cold nuclear matter effects

- heavy ions: answer the compelling questions raised by the first 10 years of RHIC running
- Are quarks strongly coupled to the QGP at all distance scales?
- What are the detailed mechanisms for parton-QGP interactions and responses?
- Are there quasiparticles at any scale?
- Is there a relevant screening length in the QGP?
- How is rapid equilibration achieved?
- p-p & d-A:
- Drell-Yan
- ΔG using di-jets and γ -jets
- cold nuclear matter effects
- e-p/e-A
 - · polarized and unpolarized structure functions
 - nuclear parton distribution functions
 - deeply virtual Compton scattering

- heavy ions: answer the compelling questions raised by the first 10 years of RHIC running
- Are quarks strongly coupled to the QGP at all distance scales?
- What are the detailed mechanisms for parton-QGP interactions and responses?
- Are there quasiparticles at any scale?
- Is there a relevant screening length in the QGP?
- How is rapid equilibration achieved?
- p-p & d-A:
- Drell-Yan
- ΔG using di-jets and γ -jets
- cold nuclear matter effects
- e-p/e-A
 - polarized and unpolarized structure functions
 - nuclear parton distribution functions
 - deeply virtual Compton scattering

sPHENIX

- advance understanding of sQGP
 - qualitatively new measurements: jets, dijets, quarkonia, heavy flavor, ...
 - HCal, high rate and large acceptance
- new opportunities for eRHIC & spin physics
 - especially important in the forward direction
- sPHENIX heavy ions complementary to LHC and current RHIC measurements
- broad, flexible of physics within a single experiment allows for precise, systematic studies of QCD

BACKUPS

Modified jets

• minimum bias data avoids possible jet shape biases

Modified jets

• minimum bias data avoids possible jet shape biases

Modified jets

• minimum bias data avoids possible jet shape biases

Vitev & Zhang PRL 104 132001 (2010) May 26, 2011

PHENIX Decadal Upgrade Detetor

- Carry over from existing PHENIX:
- VTX and FVTX
- EMCal in Forward Arm and perhaps barrel
- DAQ
- Infrastructure (LV, HV, Safety...)
- What is new:
- 2-3T solenoid (R = 60-100 cm)
- Preshower detector
- Barrel EMCal (maybe new)
- Hadronic Calorimetry
- Additional tracking layer of Si at ~ 40 cm
- Forward Arm with RICH and GEM tracker

Can be built incrementally