Collective Effects in p-A & A-A collisions

Anne M. Sickles 9/19/14

outline

highly asymmetric collisions: turn off the plasma, study the nucleus

highly asymmetric collisions: turn off the plasma, study the nucleus

or maybe not...

relativistic heavy ion collisions

quark gluon plasma

relativistic heavy ion collisions

quark gluon plasma

relativistic heavy ion collisions

quark gluon plasma

want to untangle QGP effects from effects of initial nucleus and hadronic matter

the aftermath

view: one nuclei going into the screen and one coming out

nucleon positions for the colliding nuclei for three different collisions

view: one nuclei going into the screen and one coming out

nucleon positions for the colliding nuclei for three different collisions

view: one nuclei going into the screen and one coming out

nucleon positions for the colliding nuclei for three different collisions

view: one nuclei going into the screen and one coming out

nucleon positions for the colliding nuclei for three different collisions

decreasing impact parameter

view: one nuclei going into the screen and one coming out

nucleon positions for the colliding nuclei for three different collisions

decreasing impact parameter

the overlap of the nuclei changes shape with impact parameter

initial collision geometry

initial collision geometry

the shape of the collisions is accessible in the particle distributions

•

large observed anisotropies \rightarrow strong interactions:

- fluid behavior, hydrodynamics
- larger pressure gradients push more particles out in the x direction than in y

pressure change

- large observed anisotropies \rightarrow strong interactions:
 - fluid behavior, hydrodynamics
- larger pressure gradients push more particles out in the x direction than in y

- large observed anisotropies \rightarrow strong interactions:
 - fluid behavior, hydrodynamics
- larger pressure gradients push more particles out in the x direction than in y

- large observed anisotropies \rightarrow strong interactions:
 - fluid behavior, hydrodynamics
- larger pressure gradients push more particles out in the x direction than in y

characterizing the fluid

• large $v_2 \rightarrow viscosity$ is small

PRL 94, 111601 (2005)

PHYSICAL REVIEW LETTERS

week ending 25 MARCH 2005

Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics

P. K. Kovtun,¹ D. T. Son,² and A. O. Starinets³

conjectured lower bound on viscosity / entropy density: $\eta/s > 1/4\pi$

characterizing the fluid

• large $v_2 \rightarrow viscosity$ is small

PRL 94, 111601 (2005)

PHYSICAL REVIEW LETTERS

week ending 25 MARCH 2005

Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics

P. K. Kovtun,¹ D. T. Son,² and A. O. Starinets³

conjectured lower bound on viscosity / entropy density: $\eta/s > 1/4\pi$

question: how does the QGP η/s compare to this bound?

viscometer: fine scale structure

t = 0.5 fm/c

 $\eta/s = 0$

t = 0.5 fm/c

 $\eta/s = 2/4\pi$

viscometer: fine scale structure

t = 0.5 fm/c

 $\eta/s = 2/4\pi$

$$t = 2.1 \text{ fm/c}$$

calculation: 1109.6289, images B. Schenke

viscometer: fine scale structure

t = 0.5 fm/c

 $\eta/s = 2/4\pi$

t = 2.1 fm/c

calculation: 1109.6289, images B. Schenke

each event is unique

nucleon distributions for 3 single collisions (xy-plane)

not just v_2 describing cos2 Φ , but v_n :

$$\frac{dN}{d\phi} \propto 1 + \sum^{n} 2v_n \cos n \left(\phi - \Psi_n\right)$$

two particle correlations

two particle correlations

two particle correlations

correlations in PbPb

correlations in PbPb

correlations in PbPb

flow

V₂, V₃, V₄...
$$\rightarrow$$
 η/S

 $V_2, V_3, V_4... \rightarrow \eta/s$

calc: Gale, et al. PRL 110 012302 (2013) 13

V₂, V₃, V₄... \rightarrow η/S

calc: Gale, et al. PRL 110 012302 (2013) 13

Heavy Ions @ RHIC & the LHC

RHIC

200 GeV max collision energy

2.76 TeV max collision energy

Heavy Ions @ RHIC & the LHC

RHIC

200 GeV max collision energy

2.76 TeV max collision energy

question: how does η /s change with temperature?

state of the art hydrodynamic calculations

LHC: $\eta/s = 2.5 / 4\pi$

Gale, Jeon, Schenke, Tribedy, Venugopalan PRL 110 012302 15

state of the art hydrodynamic calculations

RHIC: $\eta/s = 1.5 / 4\pi$ LHC: $\eta/s = 2.5 / 4\pi$

Gale, Jeon, Schenke, Tribedy, Venugopalan PRL 110 012302

highly asymmetric collisions: turn off the plasma, study the nucleus

or maybe not...

p-A collisions

CMS PLB 718 795 (2013)

17

p-A collisions

central collisions

CMS PLB 718 795 (2013)

$v_2 \& v3$ in pPb collisions

pPb

v₂ & v3 in pPb collisions

v₂ & v3 in pPb collisions

v₂ & v₃ very similar between pPb & PbPb! do they have a common origin?

geometry in AA & pA

AA

geometry & fluctuations

geometry in AA & pA

geometry & fluctuations

рΑ

AA

fluctuations

adding geometry to pA

рA

dA

adding geometry to pA

dA pА 10 10 2 0 -2 2

-2

2

10

now test whether the v₂ observed is related to geometry

10

PHENIX PRL 111 212301 (2013) ATLAS PRL 110 182302 (2013)

dAu, pPb, AuAu & PbPb

22

LHC

RHIC

LHC

RHIC

RHIC (6/14)

LHC

RHIC (1/15) RHIC (8/14)

very exciting to engineer the collision geometry in small systems at RHIC in the next few months!

• small scale structures are the most sensitive to viscosity

- small scale structures are the most sensitive to viscosity
- one of the biggest uncertainties on η/s is how the energy density is distributed in the initial state, pA, dA, He3A provide a new, powerful test of those models

- small scale structures are the most sensitive to viscosity
- one of the biggest uncertainties on η/s is how the energy density is distributed in the initial state, pA, dA, He3A provide a new, powerful test of those models
- more fundamentally, we are interested in how the QGP forms and why it behaves as it does;
 - any pA QGP will have a shorter lifetime, potentially more sensitive to how it is formed
 - hydrodynamic models are pushed to their limit for such small systems why do the data still look fluid-like?
 - if it's not a QGP, what is going on and how does that impact understanding AA?

conclusions

- many advances in determining the viscosity of the QGP
- new surprises from pA collisions
- new data very soon to test whether we are forming a very small QGP or something else...