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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:

E
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]
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where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
2

tan−1
( ∑

Etower
T,i wi sin(2φi)

∑
Etower

T,i wi cos(2φi)

)
, (2)

where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event

332 ATLAS Collaboration / Physics Letters B 707 (2012) 330–348

Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:

E
d3N
dp3 = 1

pT

d3N
dφ dpT dy

= 1
2π pT

E
p

d2N
dpT dη

(

1 + 2
∞∑

n=1

vn cos
[
n(φ − Ψn)

]
)

, (1)

where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
2

tan−1
( ∑

Etower
T,i wi sin(2φi)

∑
Etower

T,i wi cos(2φi)

)
, (2)

where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event

dN
/d
Φ

 (a
rb

. s
ca

le
)

Φ

Φ



collision geometry → measured particles

6PLB 707 330 (2012)

-10 -5 0 5 10

-10

-5

0

5

10

initial collision geometry measured hadron distributions

332 ATLAS Collaboration / Physics Letters B 707 (2012) 330–348

Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:

E
d3N
dp3 = 1

pT

d3N
dφ dpT dy

= 1
2π pT

E
p

d2N
dpT dη

(

1 + 2
∞∑

n=1

vn cos
[
n(φ − Ψn)

]
)

, (1)

where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
2

tan−1
( ∑

Etower
T,i wi sin(2φi)

∑
Etower

T,i wi cos(2φi)

)
, (2)

where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
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does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
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are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event

332 ATLAS Collaboration / Physics Letters B 707 (2012) 330–348

Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:

E
d3N
dp3 = 1

pT

d3N
dφ dpT dy

= 1
2π pT

E
p

d2N
dpT dη

(

1 + 2
∞∑

n=1

vn cos
[
n(φ − Ψn)

]
)

, (1)

where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
2

tan−1
( ∑

Etower
T,i wi sin(2φi)

∑
Etower

T,i wi cos(2φi)

)
, (2)

where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
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T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
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The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
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does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
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do not extract the other coefficients. To verify that this does not
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consistent with the results extracted below. The odd amplitudes
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odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
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defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
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tan−1
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where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:

E
d3N
dp3 = 1

pT

d3N
dφ dpT dy

= 1
2π pT

E
p

d2N
dpT dη

(

1 + 2
∞∑

n=1

vn cos
[
n(φ − Ψn)

]
)

, (1)

where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
2

tan−1
( ∑

Etower
T,i wi sin(2φi)

∑
Etower

T,i wi cos(2φi)

)
, (2)

where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:
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where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
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tan−1
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)
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where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:

E
d3N
dp3 = 1

pT

d3N
dφ dpT dy

= 1
2π pT

E
p

d2N
dpT dη

(

1 + 2
∞∑

n=1

vn cos
[
n(φ − Ψn)

]
)

, (1)

where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
2

tan−1
( ∑

Etower
T,i wi sin(2φi)

∑
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)
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where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:
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where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
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where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:
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where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:
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where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
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lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:
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where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
2

tan−1
( ∑

Etower
T,i wi sin(2φi)

∑
Etower

T,i wi cos(2φi)

)
, (2)

where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Introduction.—It has been known since the discovery of
Hawking radiation [1] that black holes are endowed with
thermodynamic properties such as entropy and tempera-
ture, as first suggested by Bekenstein [2] based on the
analogy between black hole physics and equilibrium ther-
modynamics. In higher-dimensional gravity theories there
exist solutions called black branes, which are black holes
with translationally invariant horizons [3]. For these solu-
tions, thermodynamics can be extended to hydrodynam-
ics—the theory that describes long-wavelength deviations
from thermal equilibrium [4]. In addition to thermody-
namic properties such as temperature and entropy, black
branes possess hydrodynamic characteristics of continuous
fluids: viscosity, diffusion constants, etc. From the perspec-
tive of the holographic principle [5,6], a black brane cor-
responds to a certain finite-temperature quantum field
theory in fewer number of spacetime dimensions, and the
hydrodynamic behavior of a black-brane horizon is iden-
tified with the hydrodynamic behavior of the dual theory.
For these field theories, in this Letter we show that the ratio
of the shear viscosity to the volume density of entropy has a
universal value

"
s

! !h
4!kB

" 6:08# 10$13K s: (1)

Furthermore, we shall argue that this is the lowest bound on
the ratio "=s for a wide class of thermal quantum field
theories.

Viscosity and graviton absorption.—Consider a thermal
field theory whose dual holographic description involves a
D-dimensional black-brane metric of the form

ds2 ! g%0&MNdx
MdxN

! f%#&%dx2 ' dy2& ' g$%%#&d#$d#%:
(2)

[The O%2& symmetry of the background is required for the
existence of the shear hydrodynamic mode in the dual
theory, thus making the notion of shear viscosity mean-
ingful.] One can have in mind, as an example, the near-
extremal D3-brane in type IIB supergravity, dual to finite-

temperature N ! 4 supersymmetric SU%Nc& Yang-Mills
theory in the limit of large Nc, and large ’t Hooft coupling
[7–10],

ds2 ! r2

R2

!

$
"

1$ r40
r4

#

dt2 ' dx2 ' dy2 ' dz2
$

' R2

r2%1$ r40=r
4& dr

2; (3)

but our discussion will be quite general. All black branes
have an event horizon [r ! r0 for the metric (3)], which is
extended along several spatial dimensions [x, y, z in the
case of (3)]. The dual field theory is at a finite temperature,
equal to the Hawking temperature of the black brane.

The entropy of the dual field theory is equal to the
entropy of the black brane, which is proportional to the
area of its event horizon,

S ! A
4G

; (4)

where G is Newton’s constant (we set !h ! c ! kB ! 1).
For black branes A contains a trivial infinite factor V equal
to the spatial volume along directions parallel to the hori-
zon. The entropy density s is equal to a=%4G&, where a !
A=V.

The shear viscosity of the dual theory can be computed
from gravity in a number of equivalent approaches [11–
13]. Here we use Kubo’s formula, which relates viscosity
to equilibrium correlation functions. In a rotationally in-
variant field theory,

" ! lim
!!0

1

2!

Z

dtdxei!th(Txy%t;x&; Txy%0; 0&)i: (5)

Here Txy is the xy component of the stress-energy tensor
(one can replace Txy by any component of the traceless part
of the stress tensor). We shall now relate the right-hand side
of (5) to the absorption cross section of low-energy
gravitons.

According to the gauge-gravity duality [10], the stress-
energy tensor T$% couples to metric perturbations at the

PRL 94, 111601 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
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Introduction.—It has been known since the discovery of
Hawking radiation [1] that black holes are endowed with
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ture, as first suggested by Bekenstein [2] based on the
analogy between black hole physics and equilibrium ther-
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exist solutions called black branes, which are black holes
with translationally invariant horizons [3]. For these solu-
tions, thermodynamics can be extended to hydrodynam-
ics—the theory that describes long-wavelength deviations
from thermal equilibrium [4]. In addition to thermody-
namic properties such as temperature and entropy, black
branes possess hydrodynamic characteristics of continuous
fluids: viscosity, diffusion constants, etc. From the perspec-
tive of the holographic principle [5,6], a black brane cor-
responds to a certain finite-temperature quantum field
theory in fewer number of spacetime dimensions, and the
hydrodynamic behavior of a black-brane horizon is iden-
tified with the hydrodynamic behavior of the dual theory.
For these field theories, in this Letter we show that the ratio
of the shear viscosity to the volume density of entropy has a
universal value
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! !h
4!kB

" 6:08# 10$13K s: (1)

Furthermore, we shall argue that this is the lowest bound on
the ratio "=s for a wide class of thermal quantum field
theories.

Viscosity and graviton absorption.—Consider a thermal
field theory whose dual holographic description involves a
D-dimensional black-brane metric of the form

ds2 ! g%0&MNdx
MdxN

! f%#&%dx2 ' dy2& ' g$%%#&d#$d#%:
(2)

[The O%2& symmetry of the background is required for the
existence of the shear hydrodynamic mode in the dual
theory, thus making the notion of shear viscosity mean-
ingful.] One can have in mind, as an example, the near-
extremal D3-brane in type IIB supergravity, dual to finite-

temperature N ! 4 supersymmetric SU%Nc& Yang-Mills
theory in the limit of large Nc, and large ’t Hooft coupling
[7–10],

ds2 ! r2

R2
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1$ r40
r4

#

dt2 ' dx2 ' dy2 ' dz2
$

' R2

r2%1$ r40=r
4& dr

2; (3)

but our discussion will be quite general. All black branes
have an event horizon [r ! r0 for the metric (3)], which is
extended along several spatial dimensions [x, y, z in the
case of (3)]. The dual field theory is at a finite temperature,
equal to the Hawking temperature of the black brane.

The entropy of the dual field theory is equal to the
entropy of the black brane, which is proportional to the
area of its event horizon,

S ! A
4G

; (4)

where G is Newton’s constant (we set !h ! c ! kB ! 1).
For black branes A contains a trivial infinite factor V equal
to the spatial volume along directions parallel to the hori-
zon. The entropy density s is equal to a=%4G&, where a !
A=V.

The shear viscosity of the dual theory can be computed
from gravity in a number of equivalent approaches [11–
13]. Here we use Kubo’s formula, which relates viscosity
to equilibrium correlation functions. In a rotationally in-
variant field theory,

" ! lim
!!0
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dtdxei!th(Txy%t;x&; Txy%0; 0&)i: (5)

Here Txy is the xy component of the stress-energy tensor
(one can replace Txy by any component of the traceless part
of the stress tensor). We shall now relate the right-hand side
of (5) to the absorption cross section of low-energy
gravitons.

According to the gauge-gravity duality [10], the stress-
energy tensor T$% couples to metric perturbations at the
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nucleon distributions for 3 single collisions (xy-plane)

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10

not just v2 describing cos2Φ, but vn:

dN
d�

/ 1 + 2v
2

cos 2 (��  
2

) (1)

dN
d�

/ 1 + 2v
2

cos 2 (��  
2

) + 2v
3

cos 3 (��  
3

) + . . . (2)

dN
d�

/ 1 +
n

Â 2vn cos n (��  n) (3)

�� ⌘ �A ��B (4)

"
2

=

p
hr2

cos 2�i2 + hr2

sin 2�i2

hri2

(5)

"
3

=

p
hr3

cos 2�i2 + hr3

sin 2�i2

hri3

(6)

dNAB
d��

/ 1 +
n

Â 2vn,Avn,B cos (n��) (7)

dN
d�

= 1 + 2v
2

cos 2� (8)

1

-10 -5 0 5 10

-10

-5

0

5

10



two particle correlations

11

12 7 Long-Range Correlations in 7 TeV Data
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Figure 7: 2-D two-particle correlation functions for 7 TeV pp (a) minimum bias events with
pT > 0.1 GeV/c, (b) minimum bias events with 1 < pT < 3 GeV/c, (c) high multiplicity
(Noffline

trk � 110) events with pT > 0.1 GeV/c and (d) high multiplicity (Noffline
trk � 110) events

with 1 < pT < 3 GeV/c. The sharp near-side peak from jet correlations is cut off in order to
better illustrate the structure outside that region.

of particles and, therefore, has a qualitatively similar effect on the shape as the particle pT cut
on minimum bias events (compare Fig. 7b and Fig. 7c). However, it is interesting to note that
a closer inspection of the shallow minimum at Df ⇡ 0 and |Dh| > 2 in high multiplicity pT-
integrated events reveals it to be slightly less pronounced than that in minimum bias collisions.

Moving to the intermediate pT range in high multiplicity events shown in Fig. 7d, an unex-
pected effect is observed in the data. A clear and significant “ridge”-like structure emerges
at Df ⇡ 0 extending to |Dh| of at least 4 units. This is a novel feature of the data which has
never been seen in two-particle correlation functions in pp or pp̄ collisions. Simulations using
MC models do not predict such an effect. An identical analysis of high multiplicity events in
PYTHIA8 [34] results in correlation functions which do not exhibit the extended ridge at Df ⇡0
seen in Fig. 7d, while all other structures of the correlation function are qualitatively repro-
duced. PYTHIA8 was used to compare to these data since it produces more high multiplicity
events than PYTHIA6 in the D6T tune . Several other PYTHIA tunes, as well as HERWIG++ [30]
and Madgraph [35] events were also investigated. No evidence for near-side correlations cor-
responding to those seen in data was found.

The novel structure in the high multiplicity pp data is reminiscent of correlations seen in rel-
ativistic heavy ion data. In the latter case, the observed long-range correlations are generally

jets in pp collisions

CMS JHEP 1009 (2010) 091
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better illustrate the structure outside that region.

of particles and, therefore, has a qualitatively similar effect on the shape as the particle pT cut
on minimum bias events (compare Fig. 7b and Fig. 7c). However, it is interesting to note that
a closer inspection of the shallow minimum at Df ⇡ 0 and |Dh| > 2 in high multiplicity pT-
integrated events reveals it to be slightly less pronounced than that in minimum bias collisions.

Moving to the intermediate pT range in high multiplicity events shown in Fig. 7d, an unex-
pected effect is observed in the data. A clear and significant “ridge”-like structure emerges
at Df ⇡ 0 extending to |Dh| of at least 4 units. This is a novel feature of the data which has
never been seen in two-particle correlation functions in pp or pp̄ collisions. Simulations using
MC models do not predict such an effect. An identical analysis of high multiplicity events in
PYTHIA8 [34] results in correlation functions which do not exhibit the extended ridge at Df ⇡0
seen in Fig. 7d, while all other structures of the correlation function are qualitatively repro-
duced. PYTHIA8 was used to compare to these data since it produces more high multiplicity
events than PYTHIA6 in the D6T tune . Several other PYTHIA tunes, as well as HERWIG++ [30]
and Madgraph [35] events were also investigated. No evidence for near-side correlations cor-
responding to those seen in data was found.
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Figure 7: 2-D two-particle correlation functions for 7 TeV pp (a) minimum bias events with
pT > 0.1 GeV/c, (b) minimum bias events with 1 < pT < 3 GeV/c, (c) high multiplicity
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better illustrate the structure outside that region.

of particles and, therefore, has a qualitatively similar effect on the shape as the particle pT cut
on minimum bias events (compare Fig. 7b and Fig. 7c). However, it is interesting to note that
a closer inspection of the shallow minimum at Df ⇡ 0 and |Dh| > 2 in high multiplicity pT-
integrated events reveals it to be slightly less pronounced than that in minimum bias collisions.

Moving to the intermediate pT range in high multiplicity events shown in Fig. 7d, an unex-
pected effect is observed in the data. A clear and significant “ridge”-like structure emerges
at Df ⇡ 0 extending to |Dh| of at least 4 units. This is a novel feature of the data which has
never been seen in two-particle correlation functions in pp or pp̄ collisions. Simulations using
MC models do not predict such an effect. An identical analysis of high multiplicity events in
PYTHIA8 [34] results in correlation functions which do not exhibit the extended ridge at Df ⇡0
seen in Fig. 7d, while all other structures of the correlation function are qualitatively repro-
duced. PYTHIA8 was used to compare to these data since it produces more high multiplicity
events than PYTHIA6 in the D6T tune . Several other PYTHIA tunes, as well as HERWIG++ [30]
and Madgraph [35] events were also investigated. No evidence for near-side correlations cor-
responding to those seen in data was found.

The novel structure in the high multiplicity pp data is reminiscent of correlations seen in rel-
ativistic heavy ion data. In the latter case, the observed long-range correlations are generally
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FIG. 2. (Color online) The steps involved in the extraction of vn

values for 2–3 GeV fixed-pT correlations in the 0%–5% centrality
interval: (a) 2D correlation function; (b) the 1D !φ correlation
function for 2 < |!η| < 5 (rebinned into 100 bins), overlaid with
contributions from the individual vn,n components and their sum,
as well as the residual difference between the data and the sum;
(c) Fourier coefficient vn,n vs |!η| for n = 1–6; and (d) vn vs |!η|
for n = 2–6. The shaded bands in (c) and (d) indicate the systematic
uncertainties, as described in the text.

dimensional (1D) !φ correlation function can be constructed
for a given !η interval:

C(!φ) = A ×
∫

S(!φ,!η)d!η∫
B(!φ,!η)d!η

. (15)

The normalization constant A is determined by scaling the
number of pairs in 2 < |!η| < 5 to be the same between
the foreground (S) and background (B). This normalization
is then applied to other !η intervals. Each 1D correlation
function is expanded into a Fourier series according to Eq. (2),
with coefficients vn,n calculated directly via a discrete Fourier
transformation (DFT):

vn,n = ⟨cos n!φ⟩ =
∑N

m=1 cos(n!φm)C(!φm)
∑N

m=1 C(!φm)
, (16)

where n = 1–15, and N = 200 is the number of !φ bins. A
small upward relative correction is applied (∼0.15% for n = 6
and increasing to 1% for n = 15) to account for the finite
!φ bin width. Figure 2(b) shows one such 1D correlation
function for 2 < |!η| < 5, overlaid with the corresponding
contributions from individual vn,n components. The shape of
the correlation function is well described by the sum of the
first six vn,n components.

According to Eq. (4), if the correlations are dominated by
those arising from asymmetry of the initial geometry such
as flow, vn,n should factorize into the product of two single-
particle harmonic coefficients. This is found to be the case for
n ! 2 at low pT for pairs with a large !η gap, but is not true for
n = 1 (see Secs. V B and V C), similar to what was also found
in other measurements [39,40]. Thus, if the two particles are
selected from the same pT interval (“fixed-pT” correlations) as
in Fig. 2, the single-particle vn for n ! 2 can be calculated as
vn = √

vn,n. When vn,n < 0, vn is defined as vn = −
√

|vn,n| (or
vn = vn,n/

√
|vn,n| in general). This calculation is repeated for

all 1D correlation functions in each |!η| slice. The resulting
full |!η| dependencies of vn,n and vn are shown in Figs. 2(c)
and 2(d), respectively.

The vn,n and vn values are found to vary rapidly for
|!η| " 1, presumably reflecting the influence of the short-
range correlation at (!φ,!η) ∼ (0, 0) [Fig. 2(a)], but they
decrease much more slowly for larger |!η|. This slow decrease
is expected because the single-particle vn also decreases very
slowly with η (see Fig. 3), and the factorization relation
Eq. (4) is valid for the present pT range (see Sec. V B). These
behaviors suggest that the autocorrelations from near-side jet
fragmentation and resonance decays can be largely eliminated
by requiring a large !η gap (e.g., |!η| > 2).

Each “fixed-pT” correlation function provides a reference
vn for a chosen pT range (denoted by superscript “a”). Tracks
from this pT range are then correlated with those from a target
pT range (denoted by superscript “b”), and this “mixed-pT”
correlation is used to calculate vn,n and to obtain the vn in the
target pT via Eq. (4). Because factorization is expected to be
valid for the anisotropies driven by the initial geometry, but
is broken by the presence of autocorrelations among the jet
fragmentation products, the level of consistency between vn

obtained from different reference pT ranges reveals whether
the 2PC is dominated by anisotropies driven by the initial
geometry. A detailed study of the factorization properties of
v1–v6 is presented in Sec. V B.

The correlation function relies on the pair acceptance
function to reproduce and cancel the detector acceptance
effects in the foreground distribution. Mathematically, the
pair acceptance function in !φ is simply a convolution
of two single-particle azimuthal distributions and should be
uniform in !φ without detector imperfections. A natural way
of quantifying the influence of detector effects on vn,n and
vn is to transform the single-particle and pair acceptance
functions into the Fourier space. The resulting coefficients
for pair acceptance vdet

n,n are the product of those for the two
single-particle acceptances vdet,a

n and vdet,b
n . In general, the

pair acceptance function is quite flat: The maximum variation
from its average is observed to be less than 0.001 for pairs
integrated over 2 < |!η| < 5, and the corresponding |vdet

n,n|
values are found to be less than 1.5 × 10−4. These vdet

n,n values
are expected to mostly cancel in the correlation function, and
only a small fraction contributes to the uncertainties of the pair
acceptance function. Three possible residual effects for vdet

n,n are
studied: (1) the time dependence of the pair acceptance, (2) the
effect of imperfect centrality matching, and (3) the effect of
imperfect zvtx matching. In each case, the residual vdet

n,n values
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FIG. 2. (Color online) The steps involved in the extraction of vn

values for 2–3 GeV fixed-pT correlations in the 0%–5% centrality
interval: (a) 2D correlation function; (b) the 1D !φ correlation
function for 2 < |!η| < 5 (rebinned into 100 bins), overlaid with
contributions from the individual vn,n components and their sum,
as well as the residual difference between the data and the sum;
(c) Fourier coefficient vn,n vs |!η| for n = 1–6; and (d) vn vs |!η|
for n = 2–6. The shaded bands in (c) and (d) indicate the systematic
uncertainties, as described in the text.

dimensional (1D) !φ correlation function can be constructed
for a given !η interval:

C(!φ) = A ×
∫

S(!φ,!η)d!η∫
B(!φ,!η)d!η

. (15)

The normalization constant A is determined by scaling the
number of pairs in 2 < |!η| < 5 to be the same between
the foreground (S) and background (B). This normalization
is then applied to other !η intervals. Each 1D correlation
function is expanded into a Fourier series according to Eq. (2),
with coefficients vn,n calculated directly via a discrete Fourier
transformation (DFT):

vn,n = ⟨cos n!φ⟩ =
∑N

m=1 cos(n!φm)C(!φm)
∑N

m=1 C(!φm)
, (16)

where n = 1–15, and N = 200 is the number of !φ bins. A
small upward relative correction is applied (∼0.15% for n = 6
and increasing to 1% for n = 15) to account for the finite
!φ bin width. Figure 2(b) shows one such 1D correlation
function for 2 < |!η| < 5, overlaid with the corresponding
contributions from individual vn,n components. The shape of
the correlation function is well described by the sum of the
first six vn,n components.

According to Eq. (4), if the correlations are dominated by
those arising from asymmetry of the initial geometry such
as flow, vn,n should factorize into the product of two single-
particle harmonic coefficients. This is found to be the case for
n ! 2 at low pT for pairs with a large !η gap, but is not true for
n = 1 (see Secs. V B and V C), similar to what was also found
in other measurements [39,40]. Thus, if the two particles are
selected from the same pT interval (“fixed-pT” correlations) as
in Fig. 2, the single-particle vn for n ! 2 can be calculated as
vn = √

vn,n. When vn,n < 0, vn is defined as vn = −
√

|vn,n| (or
vn = vn,n/

√
|vn,n| in general). This calculation is repeated for

all 1D correlation functions in each |!η| slice. The resulting
full |!η| dependencies of vn,n and vn are shown in Figs. 2(c)
and 2(d), respectively.

The vn,n and vn values are found to vary rapidly for
|!η| " 1, presumably reflecting the influence of the short-
range correlation at (!φ,!η) ∼ (0, 0) [Fig. 2(a)], but they
decrease much more slowly for larger |!η|. This slow decrease
is expected because the single-particle vn also decreases very
slowly with η (see Fig. 3), and the factorization relation
Eq. (4) is valid for the present pT range (see Sec. V B). These
behaviors suggest that the autocorrelations from near-side jet
fragmentation and resonance decays can be largely eliminated
by requiring a large !η gap (e.g., |!η| > 2).

Each “fixed-pT” correlation function provides a reference
vn for a chosen pT range (denoted by superscript “a”). Tracks
from this pT range are then correlated with those from a target
pT range (denoted by superscript “b”), and this “mixed-pT”
correlation is used to calculate vn,n and to obtain the vn in the
target pT via Eq. (4). Because factorization is expected to be
valid for the anisotropies driven by the initial geometry, but
is broken by the presence of autocorrelations among the jet
fragmentation products, the level of consistency between vn

obtained from different reference pT ranges reveals whether
the 2PC is dominated by anisotropies driven by the initial
geometry. A detailed study of the factorization properties of
v1–v6 is presented in Sec. V B.

The correlation function relies on the pair acceptance
function to reproduce and cancel the detector acceptance
effects in the foreground distribution. Mathematically, the
pair acceptance function in !φ is simply a convolution
of two single-particle azimuthal distributions and should be
uniform in !φ without detector imperfections. A natural way
of quantifying the influence of detector effects on vn,n and
vn is to transform the single-particle and pair acceptance
functions into the Fourier space. The resulting coefficients
for pair acceptance vdet

n,n are the product of those for the two
single-particle acceptances vdet,a

n and vdet,b
n . In general, the

pair acceptance function is quite flat: The maximum variation
from its average is observed to be less than 0.001 for pairs
integrated over 2 < |!η| < 5, and the corresponding |vdet

n,n|
values are found to be less than 1.5 × 10−4. These vdet

n,n values
are expected to mostly cancel in the correlation function, and
only a small fraction contributes to the uncertainties of the pair
acceptance function. Three possible residual effects for vdet

n,n are
studied: (1) the time dependence of the pair acceptance, (2) the
effect of imperfect centrality matching, and (3) the effect of
imperfect zvtx matching. In each case, the residual vdet

n,n values
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FIG. 2. (Color online) The steps involved in the extraction of vn

values for 2–3 GeV fixed-pT correlations in the 0%–5% centrality
interval: (a) 2D correlation function; (b) the 1D !φ correlation
function for 2 < |!η| < 5 (rebinned into 100 bins), overlaid with
contributions from the individual vn,n components and their sum,
as well as the residual difference between the data and the sum;
(c) Fourier coefficient vn,n vs |!η| for n = 1–6; and (d) vn vs |!η|
for n = 2–6. The shaded bands in (c) and (d) indicate the systematic
uncertainties, as described in the text.

dimensional (1D) !φ correlation function can be constructed
for a given !η interval:

C(!φ) = A ×
∫

S(!φ,!η)d!η∫
B(!φ,!η)d!η

. (15)

The normalization constant A is determined by scaling the
number of pairs in 2 < |!η| < 5 to be the same between
the foreground (S) and background (B). This normalization
is then applied to other !η intervals. Each 1D correlation
function is expanded into a Fourier series according to Eq. (2),
with coefficients vn,n calculated directly via a discrete Fourier
transformation (DFT):

vn,n = ⟨cos n!φ⟩ =
∑N

m=1 cos(n!φm)C(!φm)
∑N

m=1 C(!φm)
, (16)

where n = 1–15, and N = 200 is the number of !φ bins. A
small upward relative correction is applied (∼0.15% for n = 6
and increasing to 1% for n = 15) to account for the finite
!φ bin width. Figure 2(b) shows one such 1D correlation
function for 2 < |!η| < 5, overlaid with the corresponding
contributions from individual vn,n components. The shape of
the correlation function is well described by the sum of the
first six vn,n components.

According to Eq. (4), if the correlations are dominated by
those arising from asymmetry of the initial geometry such
as flow, vn,n should factorize into the product of two single-
particle harmonic coefficients. This is found to be the case for
n ! 2 at low pT for pairs with a large !η gap, but is not true for
n = 1 (see Secs. V B and V C), similar to what was also found
in other measurements [39,40]. Thus, if the two particles are
selected from the same pT interval (“fixed-pT” correlations) as
in Fig. 2, the single-particle vn for n ! 2 can be calculated as
vn = √

vn,n. When vn,n < 0, vn is defined as vn = −
√

|vn,n| (or
vn = vn,n/

√
|vn,n| in general). This calculation is repeated for

all 1D correlation functions in each |!η| slice. The resulting
full |!η| dependencies of vn,n and vn are shown in Figs. 2(c)
and 2(d), respectively.

The vn,n and vn values are found to vary rapidly for
|!η| " 1, presumably reflecting the influence of the short-
range correlation at (!φ,!η) ∼ (0, 0) [Fig. 2(a)], but they
decrease much more slowly for larger |!η|. This slow decrease
is expected because the single-particle vn also decreases very
slowly with η (see Fig. 3), and the factorization relation
Eq. (4) is valid for the present pT range (see Sec. V B). These
behaviors suggest that the autocorrelations from near-side jet
fragmentation and resonance decays can be largely eliminated
by requiring a large !η gap (e.g., |!η| > 2).

Each “fixed-pT” correlation function provides a reference
vn for a chosen pT range (denoted by superscript “a”). Tracks
from this pT range are then correlated with those from a target
pT range (denoted by superscript “b”), and this “mixed-pT”
correlation is used to calculate vn,n and to obtain the vn in the
target pT via Eq. (4). Because factorization is expected to be
valid for the anisotropies driven by the initial geometry, but
is broken by the presence of autocorrelations among the jet
fragmentation products, the level of consistency between vn

obtained from different reference pT ranges reveals whether
the 2PC is dominated by anisotropies driven by the initial
geometry. A detailed study of the factorization properties of
v1–v6 is presented in Sec. V B.

The correlation function relies on the pair acceptance
function to reproduce and cancel the detector acceptance
effects in the foreground distribution. Mathematically, the
pair acceptance function in !φ is simply a convolution
of two single-particle azimuthal distributions and should be
uniform in !φ without detector imperfections. A natural way
of quantifying the influence of detector effects on vn,n and
vn is to transform the single-particle and pair acceptance
functions into the Fourier space. The resulting coefficients
for pair acceptance vdet

n,n are the product of those for the two
single-particle acceptances vdet,a

n and vdet,b
n . In general, the

pair acceptance function is quite flat: The maximum variation
from its average is observed to be less than 0.001 for pairs
integrated over 2 < |!η| < 5, and the corresponding |vdet

n,n|
values are found to be less than 1.5 × 10−4. These vdet

n,n values
are expected to mostly cancel in the correlation function, and
only a small fraction contributes to the uncertainties of the pair
acceptance function. Three possible residual effects for vdet

n,n are
studied: (1) the time dependence of the pair acceptance, (2) the
effect of imperfect centrality matching, and (3) the effect of
imperfect zvtx matching. In each case, the residual vdet

n,n values
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FIG. 2. (Color online) The steps involved in the extraction of vn

values for 2–3 GeV fixed-pT correlations in the 0%–5% centrality
interval: (a) 2D correlation function; (b) the 1D !φ correlation
function for 2 < |!η| < 5 (rebinned into 100 bins), overlaid with
contributions from the individual vn,n components and their sum,
as well as the residual difference between the data and the sum;
(c) Fourier coefficient vn,n vs |!η| for n = 1–6; and (d) vn vs |!η|
for n = 2–6. The shaded bands in (c) and (d) indicate the systematic
uncertainties, as described in the text.

dimensional (1D) !φ correlation function can be constructed
for a given !η interval:

C(!φ) = A ×
∫

S(!φ,!η)d!η∫
B(!φ,!η)d!η

. (15)

The normalization constant A is determined by scaling the
number of pairs in 2 < |!η| < 5 to be the same between
the foreground (S) and background (B). This normalization
is then applied to other !η intervals. Each 1D correlation
function is expanded into a Fourier series according to Eq. (2),
with coefficients vn,n calculated directly via a discrete Fourier
transformation (DFT):

vn,n = ⟨cos n!φ⟩ =
∑N

m=1 cos(n!φm)C(!φm)
∑N

m=1 C(!φm)
, (16)

where n = 1–15, and N = 200 is the number of !φ bins. A
small upward relative correction is applied (∼0.15% for n = 6
and increasing to 1% for n = 15) to account for the finite
!φ bin width. Figure 2(b) shows one such 1D correlation
function for 2 < |!η| < 5, overlaid with the corresponding
contributions from individual vn,n components. The shape of
the correlation function is well described by the sum of the
first six vn,n components.

According to Eq. (4), if the correlations are dominated by
those arising from asymmetry of the initial geometry such
as flow, vn,n should factorize into the product of two single-
particle harmonic coefficients. This is found to be the case for
n ! 2 at low pT for pairs with a large !η gap, but is not true for
n = 1 (see Secs. V B and V C), similar to what was also found
in other measurements [39,40]. Thus, if the two particles are
selected from the same pT interval (“fixed-pT” correlations) as
in Fig. 2, the single-particle vn for n ! 2 can be calculated as
vn = √

vn,n. When vn,n < 0, vn is defined as vn = −
√

|vn,n| (or
vn = vn,n/

√
|vn,n| in general). This calculation is repeated for

all 1D correlation functions in each |!η| slice. The resulting
full |!η| dependencies of vn,n and vn are shown in Figs. 2(c)
and 2(d), respectively.

The vn,n and vn values are found to vary rapidly for
|!η| " 1, presumably reflecting the influence of the short-
range correlation at (!φ,!η) ∼ (0, 0) [Fig. 2(a)], but they
decrease much more slowly for larger |!η|. This slow decrease
is expected because the single-particle vn also decreases very
slowly with η (see Fig. 3), and the factorization relation
Eq. (4) is valid for the present pT range (see Sec. V B). These
behaviors suggest that the autocorrelations from near-side jet
fragmentation and resonance decays can be largely eliminated
by requiring a large !η gap (e.g., |!η| > 2).

Each “fixed-pT” correlation function provides a reference
vn for a chosen pT range (denoted by superscript “a”). Tracks
from this pT range are then correlated with those from a target
pT range (denoted by superscript “b”), and this “mixed-pT”
correlation is used to calculate vn,n and to obtain the vn in the
target pT via Eq. (4). Because factorization is expected to be
valid for the anisotropies driven by the initial geometry, but
is broken by the presence of autocorrelations among the jet
fragmentation products, the level of consistency between vn

obtained from different reference pT ranges reveals whether
the 2PC is dominated by anisotropies driven by the initial
geometry. A detailed study of the factorization properties of
v1–v6 is presented in Sec. V B.

The correlation function relies on the pair acceptance
function to reproduce and cancel the detector acceptance
effects in the foreground distribution. Mathematically, the
pair acceptance function in !φ is simply a convolution
of two single-particle azimuthal distributions and should be
uniform in !φ without detector imperfections. A natural way
of quantifying the influence of detector effects on vn,n and
vn is to transform the single-particle and pair acceptance
functions into the Fourier space. The resulting coefficients
for pair acceptance vdet

n,n are the product of those for the two
single-particle acceptances vdet,a

n and vdet,b
n . In general, the

pair acceptance function is quite flat: The maximum variation
from its average is observed to be less than 0.001 for pairs
integrated over 2 < |!η| < 5, and the corresponding |vdet

n,n|
values are found to be less than 1.5 × 10−4. These vdet

n,n values
are expected to mostly cancel in the correlation function, and
only a small fraction contributes to the uncertainties of the pair
acceptance function. Three possible residual effects for vdet

n,n are
studied: (1) the time dependence of the pair acceptance, (2) the
effect of imperfect centrality matching, and (3) the effect of
imperfect zvtx matching. In each case, the residual vdet

n,n values
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FIG. 2. (Color online) The steps involved in the extraction of vn

values for 2–3 GeV fixed-pT correlations in the 0%–5% centrality
interval: (a) 2D correlation function; (b) the 1D !φ correlation
function for 2 < |!η| < 5 (rebinned into 100 bins), overlaid with
contributions from the individual vn,n components and their sum,
as well as the residual difference between the data and the sum;
(c) Fourier coefficient vn,n vs |!η| for n = 1–6; and (d) vn vs |!η|
for n = 2–6. The shaded bands in (c) and (d) indicate the systematic
uncertainties, as described in the text.

dimensional (1D) !φ correlation function can be constructed
for a given !η interval:

C(!φ) = A ×
∫

S(!φ,!η)d!η∫
B(!φ,!η)d!η

. (15)

The normalization constant A is determined by scaling the
number of pairs in 2 < |!η| < 5 to be the same between
the foreground (S) and background (B). This normalization
is then applied to other !η intervals. Each 1D correlation
function is expanded into a Fourier series according to Eq. (2),
with coefficients vn,n calculated directly via a discrete Fourier
transformation (DFT):

vn,n = ⟨cos n!φ⟩ =
∑N

m=1 cos(n!φm)C(!φm)
∑N

m=1 C(!φm)
, (16)

where n = 1–15, and N = 200 is the number of !φ bins. A
small upward relative correction is applied (∼0.15% for n = 6
and increasing to 1% for n = 15) to account for the finite
!φ bin width. Figure 2(b) shows one such 1D correlation
function for 2 < |!η| < 5, overlaid with the corresponding
contributions from individual vn,n components. The shape of
the correlation function is well described by the sum of the
first six vn,n components.

According to Eq. (4), if the correlations are dominated by
those arising from asymmetry of the initial geometry such
as flow, vn,n should factorize into the product of two single-
particle harmonic coefficients. This is found to be the case for
n ! 2 at low pT for pairs with a large !η gap, but is not true for
n = 1 (see Secs. V B and V C), similar to what was also found
in other measurements [39,40]. Thus, if the two particles are
selected from the same pT interval (“fixed-pT” correlations) as
in Fig. 2, the single-particle vn for n ! 2 can be calculated as
vn = √

vn,n. When vn,n < 0, vn is defined as vn = −
√

|vn,n| (or
vn = vn,n/

√
|vn,n| in general). This calculation is repeated for

all 1D correlation functions in each |!η| slice. The resulting
full |!η| dependencies of vn,n and vn are shown in Figs. 2(c)
and 2(d), respectively.

The vn,n and vn values are found to vary rapidly for
|!η| " 1, presumably reflecting the influence of the short-
range correlation at (!φ,!η) ∼ (0, 0) [Fig. 2(a)], but they
decrease much more slowly for larger |!η|. This slow decrease
is expected because the single-particle vn also decreases very
slowly with η (see Fig. 3), and the factorization relation
Eq. (4) is valid for the present pT range (see Sec. V B). These
behaviors suggest that the autocorrelations from near-side jet
fragmentation and resonance decays can be largely eliminated
by requiring a large !η gap (e.g., |!η| > 2).

Each “fixed-pT” correlation function provides a reference
vn for a chosen pT range (denoted by superscript “a”). Tracks
from this pT range are then correlated with those from a target
pT range (denoted by superscript “b”), and this “mixed-pT”
correlation is used to calculate vn,n and to obtain the vn in the
target pT via Eq. (4). Because factorization is expected to be
valid for the anisotropies driven by the initial geometry, but
is broken by the presence of autocorrelations among the jet
fragmentation products, the level of consistency between vn

obtained from different reference pT ranges reveals whether
the 2PC is dominated by anisotropies driven by the initial
geometry. A detailed study of the factorization properties of
v1–v6 is presented in Sec. V B.

The correlation function relies on the pair acceptance
function to reproduce and cancel the detector acceptance
effects in the foreground distribution. Mathematically, the
pair acceptance function in !φ is simply a convolution
of two single-particle azimuthal distributions and should be
uniform in !φ without detector imperfections. A natural way
of quantifying the influence of detector effects on vn,n and
vn is to transform the single-particle and pair acceptance
functions into the Fourier space. The resulting coefficients
for pair acceptance vdet

n,n are the product of those for the two
single-particle acceptances vdet,a

n and vdet,b
n . In general, the

pair acceptance function is quite flat: The maximum variation
from its average is observed to be less than 0.001 for pairs
integrated over 2 < |!η| < 5, and the corresponding |vdet

n,n|
values are found to be less than 1.5 × 10−4. These vdet

n,n values
are expected to mostly cancel in the correlation function, and
only a small fraction contributes to the uncertainties of the pair
acceptance function. Three possible residual effects for vdet

n,n are
studied: (1) the time dependence of the pair acceptance, (2) the
effect of imperfect centrality matching, and (3) the effect of
imperfect zvtx matching. In each case, the residual vdet

n,n values
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FIG. 2. (Color online) The steps involved in the extraction of vn

values for 2–3 GeV fixed-pT correlations in the 0%–5% centrality
interval: (a) 2D correlation function; (b) the 1D !φ correlation
function for 2 < |!η| < 5 (rebinned into 100 bins), overlaid with
contributions from the individual vn,n components and their sum,
as well as the residual difference between the data and the sum;
(c) Fourier coefficient vn,n vs |!η| for n = 1–6; and (d) vn vs |!η|
for n = 2–6. The shaded bands in (c) and (d) indicate the systematic
uncertainties, as described in the text.

dimensional (1D) !φ correlation function can be constructed
for a given !η interval:

C(!φ) = A ×
∫

S(!φ,!η)d!η∫
B(!φ,!η)d!η

. (15)

The normalization constant A is determined by scaling the
number of pairs in 2 < |!η| < 5 to be the same between
the foreground (S) and background (B). This normalization
is then applied to other !η intervals. Each 1D correlation
function is expanded into a Fourier series according to Eq. (2),
with coefficients vn,n calculated directly via a discrete Fourier
transformation (DFT):

vn,n = ⟨cos n!φ⟩ =
∑N

m=1 cos(n!φm)C(!φm)
∑N

m=1 C(!φm)
, (16)

where n = 1–15, and N = 200 is the number of !φ bins. A
small upward relative correction is applied (∼0.15% for n = 6
and increasing to 1% for n = 15) to account for the finite
!φ bin width. Figure 2(b) shows one such 1D correlation
function for 2 < |!η| < 5, overlaid with the corresponding
contributions from individual vn,n components. The shape of
the correlation function is well described by the sum of the
first six vn,n components.

According to Eq. (4), if the correlations are dominated by
those arising from asymmetry of the initial geometry such
as flow, vn,n should factorize into the product of two single-
particle harmonic coefficients. This is found to be the case for
n ! 2 at low pT for pairs with a large !η gap, but is not true for
n = 1 (see Secs. V B and V C), similar to what was also found
in other measurements [39,40]. Thus, if the two particles are
selected from the same pT interval (“fixed-pT” correlations) as
in Fig. 2, the single-particle vn for n ! 2 can be calculated as
vn = √

vn,n. When vn,n < 0, vn is defined as vn = −
√

|vn,n| (or
vn = vn,n/

√
|vn,n| in general). This calculation is repeated for

all 1D correlation functions in each |!η| slice. The resulting
full |!η| dependencies of vn,n and vn are shown in Figs. 2(c)
and 2(d), respectively.

The vn,n and vn values are found to vary rapidly for
|!η| " 1, presumably reflecting the influence of the short-
range correlation at (!φ,!η) ∼ (0, 0) [Fig. 2(a)], but they
decrease much more slowly for larger |!η|. This slow decrease
is expected because the single-particle vn also decreases very
slowly with η (see Fig. 3), and the factorization relation
Eq. (4) is valid for the present pT range (see Sec. V B). These
behaviors suggest that the autocorrelations from near-side jet
fragmentation and resonance decays can be largely eliminated
by requiring a large !η gap (e.g., |!η| > 2).

Each “fixed-pT” correlation function provides a reference
vn for a chosen pT range (denoted by superscript “a”). Tracks
from this pT range are then correlated with those from a target
pT range (denoted by superscript “b”), and this “mixed-pT”
correlation is used to calculate vn,n and to obtain the vn in the
target pT via Eq. (4). Because factorization is expected to be
valid for the anisotropies driven by the initial geometry, but
is broken by the presence of autocorrelations among the jet
fragmentation products, the level of consistency between vn

obtained from different reference pT ranges reveals whether
the 2PC is dominated by anisotropies driven by the initial
geometry. A detailed study of the factorization properties of
v1–v6 is presented in Sec. V B.

The correlation function relies on the pair acceptance
function to reproduce and cancel the detector acceptance
effects in the foreground distribution. Mathematically, the
pair acceptance function in !φ is simply a convolution
of two single-particle azimuthal distributions and should be
uniform in !φ without detector imperfections. A natural way
of quantifying the influence of detector effects on vn,n and
vn is to transform the single-particle and pair acceptance
functions into the Fourier space. The resulting coefficients
for pair acceptance vdet

n,n are the product of those for the two
single-particle acceptances vdet,a

n and vdet,b
n . In general, the

pair acceptance function is quite flat: The maximum variation
from its average is observed to be less than 0.001 for pairs
integrated over 2 < |!η| < 5, and the corresponding |vdet

n,n|
values are found to be less than 1.5 × 10−4. These vdet

n,n values
are expected to mostly cancel in the correlation function, and
only a small fraction contributes to the uncertainties of the pair
acceptance function. Three possible residual effects for vdet

n,n are
studied: (1) the time dependence of the pair acceptance, (2) the
effect of imperfect centrality matching, and (3) the effect of
imperfect zvtx matching. In each case, the residual vdet

n,n values
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FIG. 2. (Color online) The steps involved in the extraction of vn

values for 2–3 GeV fixed-pT correlations in the 0%–5% centrality
interval: (a) 2D correlation function; (b) the 1D !φ correlation
function for 2 < |!η| < 5 (rebinned into 100 bins), overlaid with
contributions from the individual vn,n components and their sum,
as well as the residual difference between the data and the sum;
(c) Fourier coefficient vn,n vs |!η| for n = 1–6; and (d) vn vs |!η|
for n = 2–6. The shaded bands in (c) and (d) indicate the systematic
uncertainties, as described in the text.

dimensional (1D) !φ correlation function can be constructed
for a given !η interval:

C(!φ) = A ×
∫

S(!φ,!η)d!η∫
B(!φ,!η)d!η

. (15)

The normalization constant A is determined by scaling the
number of pairs in 2 < |!η| < 5 to be the same between
the foreground (S) and background (B). This normalization
is then applied to other !η intervals. Each 1D correlation
function is expanded into a Fourier series according to Eq. (2),
with coefficients vn,n calculated directly via a discrete Fourier
transformation (DFT):

vn,n = ⟨cos n!φ⟩ =
∑N

m=1 cos(n!φm)C(!φm)
∑N

m=1 C(!φm)
, (16)

where n = 1–15, and N = 200 is the number of !φ bins. A
small upward relative correction is applied (∼0.15% for n = 6
and increasing to 1% for n = 15) to account for the finite
!φ bin width. Figure 2(b) shows one such 1D correlation
function for 2 < |!η| < 5, overlaid with the corresponding
contributions from individual vn,n components. The shape of
the correlation function is well described by the sum of the
first six vn,n components.

According to Eq. (4), if the correlations are dominated by
those arising from asymmetry of the initial geometry such
as flow, vn,n should factorize into the product of two single-
particle harmonic coefficients. This is found to be the case for
n ! 2 at low pT for pairs with a large !η gap, but is not true for
n = 1 (see Secs. V B and V C), similar to what was also found
in other measurements [39,40]. Thus, if the two particles are
selected from the same pT interval (“fixed-pT” correlations) as
in Fig. 2, the single-particle vn for n ! 2 can be calculated as
vn = √

vn,n. When vn,n < 0, vn is defined as vn = −
√

|vn,n| (or
vn = vn,n/

√
|vn,n| in general). This calculation is repeated for

all 1D correlation functions in each |!η| slice. The resulting
full |!η| dependencies of vn,n and vn are shown in Figs. 2(c)
and 2(d), respectively.

The vn,n and vn values are found to vary rapidly for
|!η| " 1, presumably reflecting the influence of the short-
range correlation at (!φ,!η) ∼ (0, 0) [Fig. 2(a)], but they
decrease much more slowly for larger |!η|. This slow decrease
is expected because the single-particle vn also decreases very
slowly with η (see Fig. 3), and the factorization relation
Eq. (4) is valid for the present pT range (see Sec. V B). These
behaviors suggest that the autocorrelations from near-side jet
fragmentation and resonance decays can be largely eliminated
by requiring a large !η gap (e.g., |!η| > 2).

Each “fixed-pT” correlation function provides a reference
vn for a chosen pT range (denoted by superscript “a”). Tracks
from this pT range are then correlated with those from a target
pT range (denoted by superscript “b”), and this “mixed-pT”
correlation is used to calculate vn,n and to obtain the vn in the
target pT via Eq. (4). Because factorization is expected to be
valid for the anisotropies driven by the initial geometry, but
is broken by the presence of autocorrelations among the jet
fragmentation products, the level of consistency between vn

obtained from different reference pT ranges reveals whether
the 2PC is dominated by anisotropies driven by the initial
geometry. A detailed study of the factorization properties of
v1–v6 is presented in Sec. V B.

The correlation function relies on the pair acceptance
function to reproduce and cancel the detector acceptance
effects in the foreground distribution. Mathematically, the
pair acceptance function in !φ is simply a convolution
of two single-particle azimuthal distributions and should be
uniform in !φ without detector imperfections. A natural way
of quantifying the influence of detector effects on vn,n and
vn is to transform the single-particle and pair acceptance
functions into the Fourier space. The resulting coefficients
for pair acceptance vdet

n,n are the product of those for the two
single-particle acceptances vdet,a

n and vdet,b
n . In general, the

pair acceptance function is quite flat: The maximum variation
from its average is observed to be less than 0.001 for pairs
integrated over 2 < |!η| < 5, and the corresponding |vdet

n,n|
values are found to be less than 1.5 × 10−4. These vdet

n,n values
are expected to mostly cancel in the correlation function, and
only a small fraction contributes to the uncertainties of the pair
acceptance function. Three possible residual effects for vdet

n,n are
studied: (1) the time dependence of the pair acceptance, (2) the
effect of imperfect centrality matching, and (3) the effect of
imperfect zvtx matching. In each case, the residual vdet

n,n values
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u!T
!"
CYM ¼ "u", using the fact that u! is a timelike eigen-

vector of T!"
CYM and satisfies u2 ¼ 1.

Other important details of our analysis are as follows.
Unless otherwise noted, #switch ¼ 0:2 fm=c. We employ
the s95p-PCE equation of state, obtained from fits to
lattice quantum chromodynamics (QCD) results and a
hadron resonance gas model [30], with partial chemical
equilibrium (PCE) setting in below a temperature TPCE ¼
150 MeV. Kinetic freeze-out occurs at TFO ¼ 120 MeV.
At this temperature, we implement the Cooper-Frye pre-
scription [31] for computing particle spectra. Unless other-
wise noted, shown results include decays from resonances
of masses up to 1.3 GeV.

A novel feature of our study is the determination of
centrality classes using the multiplicity distribution of
gluons much like the procedure followed by the heavy
ion experiments [32]. The gluon multiplicity distribution
is shown in Fig. 1. Centrality classes are determined from
the fraction of the integral over this distribution, beginning
with integrating from the right. As a consequence of
implementing this centrality selection, we properly
account for impact parameter and multiplicity fluctuations.

Because entropy is produced during the viscous hydro-
dynamic evolution, we need to adjust the normalization of
the initial energy density commensurately to describe the
final particle spectra [33]. The obtained pT spectra of

pions, kaons, and protons are shown for 0%–5% central
collisions at

ffiffiffi
s

p ¼ 2:76 TeV=nucleon, using the shear vis-
cosity to entropy density ratio $=s ¼ 0:2, in Fig. 2, and
compared to data from ALICE [34]. The results are for
averages over only 20 events in this case, but statistical
errors are smaller than the linewidth for the spectra.
Overall, the agreement with experimental data is good.
However, soft pions at pT < 300 MeV are underestimated.
We determine v1 to v5 in every event by first determin-

ing the exact event plane [35,36]

c n ¼
1

n
arctan

hsinðn%Þi
hcosðn%Þi ; (1)

and then computing

vnðpTÞ ¼ hcosðnð%$ c nÞÞi

%
R
d%fðpT;%Þ cosðnð%$ c nÞÞR

d%fðpT;%Þ ; (2)

where fðpT;%Þ are the thermal distribution functions with
viscous corrections obtained in the Cooper-Frye approach
(with additional contributions from resonance decays).
We first present the root-mean-square (rms) vnðpTÞ for

10%–20% central collisions and compare to experimental
data from the ATLAS Collaboration [4] in Fig. 3.
Agreement for v2–v5 is excellent. Note that the vn from
the experimental event-plane method used by ATLAS
agree well with the rms values [37]. We also find excellent
agreement over the whole studied centrality range when
comparing the pT-integrated rms v2, v3, and v4 to the
available vnf2g (obtained from two-particle correlations,
corresponding to the rms values) from the ALICE
Collaboration [3], as shown in Fig. 4.
We studied the effect of initial transverse flow included

in our framework by also computing vnðpTÞ with u! set to
zero at time #switch. The effect on hadron anisotropic flow
turns out to be extremely weak—results agree within sta-
tistical errors. Because photons are produced early on in
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FIG. 2. (Color online) The steps involved in the extraction of vn

values for 2–3 GeV fixed-pT correlations in the 0%–5% centrality
interval: (a) 2D correlation function; (b) the 1D !φ correlation
function for 2 < |!η| < 5 (rebinned into 100 bins), overlaid with
contributions from the individual vn,n components and their sum,
as well as the residual difference between the data and the sum;
(c) Fourier coefficient vn,n vs |!η| for n = 1–6; and (d) vn vs |!η|
for n = 2–6. The shaded bands in (c) and (d) indicate the systematic
uncertainties, as described in the text.

dimensional (1D) !φ correlation function can be constructed
for a given !η interval:

C(!φ) = A ×
∫

S(!φ,!η)d!η∫
B(!φ,!η)d!η

. (15)

The normalization constant A is determined by scaling the
number of pairs in 2 < |!η| < 5 to be the same between
the foreground (S) and background (B). This normalization
is then applied to other !η intervals. Each 1D correlation
function is expanded into a Fourier series according to Eq. (2),
with coefficients vn,n calculated directly via a discrete Fourier
transformation (DFT):

vn,n = ⟨cos n!φ⟩ =
∑N

m=1 cos(n!φm)C(!φm)
∑N

m=1 C(!φm)
, (16)

where n = 1–15, and N = 200 is the number of !φ bins. A
small upward relative correction is applied (∼0.15% for n = 6
and increasing to 1% for n = 15) to account for the finite
!φ bin width. Figure 2(b) shows one such 1D correlation
function for 2 < |!η| < 5, overlaid with the corresponding
contributions from individual vn,n components. The shape of
the correlation function is well described by the sum of the
first six vn,n components.

According to Eq. (4), if the correlations are dominated by
those arising from asymmetry of the initial geometry such
as flow, vn,n should factorize into the product of two single-
particle harmonic coefficients. This is found to be the case for
n ! 2 at low pT for pairs with a large !η gap, but is not true for
n = 1 (see Secs. V B and V C), similar to what was also found
in other measurements [39,40]. Thus, if the two particles are
selected from the same pT interval (“fixed-pT” correlations) as
in Fig. 2, the single-particle vn for n ! 2 can be calculated as
vn = √

vn,n. When vn,n < 0, vn is defined as vn = −
√

|vn,n| (or
vn = vn,n/

√
|vn,n| in general). This calculation is repeated for

all 1D correlation functions in each |!η| slice. The resulting
full |!η| dependencies of vn,n and vn are shown in Figs. 2(c)
and 2(d), respectively.

The vn,n and vn values are found to vary rapidly for
|!η| " 1, presumably reflecting the influence of the short-
range correlation at (!φ,!η) ∼ (0, 0) [Fig. 2(a)], but they
decrease much more slowly for larger |!η|. This slow decrease
is expected because the single-particle vn also decreases very
slowly with η (see Fig. 3), and the factorization relation
Eq. (4) is valid for the present pT range (see Sec. V B). These
behaviors suggest that the autocorrelations from near-side jet
fragmentation and resonance decays can be largely eliminated
by requiring a large !η gap (e.g., |!η| > 2).

Each “fixed-pT” correlation function provides a reference
vn for a chosen pT range (denoted by superscript “a”). Tracks
from this pT range are then correlated with those from a target
pT range (denoted by superscript “b”), and this “mixed-pT”
correlation is used to calculate vn,n and to obtain the vn in the
target pT via Eq. (4). Because factorization is expected to be
valid for the anisotropies driven by the initial geometry, but
is broken by the presence of autocorrelations among the jet
fragmentation products, the level of consistency between vn

obtained from different reference pT ranges reveals whether
the 2PC is dominated by anisotropies driven by the initial
geometry. A detailed study of the factorization properties of
v1–v6 is presented in Sec. V B.

The correlation function relies on the pair acceptance
function to reproduce and cancel the detector acceptance
effects in the foreground distribution. Mathematically, the
pair acceptance function in !φ is simply a convolution
of two single-particle azimuthal distributions and should be
uniform in !φ without detector imperfections. A natural way
of quantifying the influence of detector effects on vn,n and
vn is to transform the single-particle and pair acceptance
functions into the Fourier space. The resulting coefficients
for pair acceptance vdet

n,n are the product of those for the two
single-particle acceptances vdet,a

n and vdet,b
n . In general, the

pair acceptance function is quite flat: The maximum variation
from its average is observed to be less than 0.001 for pairs
integrated over 2 < |!η| < 5, and the corresponding |vdet

n,n|
values are found to be less than 1.5 × 10−4. These vdet

n,n values
are expected to mostly cancel in the correlation function, and
only a small fraction contributes to the uncertainties of the pair
acceptance function. Three possible residual effects for vdet

n,n are
studied: (1) the time dependence of the pair acceptance, (2) the
effect of imperfect centrality matching, and (3) the effect of
imperfect zvtx matching. In each case, the residual vdet

n,n values

014907-7

MEASUREMENT OF THE AZIMUTHAL ANISOTROPY FOR . . . PHYSICAL REVIEW C 86, 014907 (2012)

FIG. 2. (Color online) The steps involved in the extraction of vn

values for 2–3 GeV fixed-pT correlations in the 0%–5% centrality
interval: (a) 2D correlation function; (b) the 1D !φ correlation
function for 2 < |!η| < 5 (rebinned into 100 bins), overlaid with
contributions from the individual vn,n components and their sum,
as well as the residual difference between the data and the sum;
(c) Fourier coefficient vn,n vs |!η| for n = 1–6; and (d) vn vs |!η|
for n = 2–6. The shaded bands in (c) and (d) indicate the systematic
uncertainties, as described in the text.

dimensional (1D) !φ correlation function can be constructed
for a given !η interval:

C(!φ) = A ×
∫

S(!φ,!η)d!η∫
B(!φ,!η)d!η

. (15)

The normalization constant A is determined by scaling the
number of pairs in 2 < |!η| < 5 to be the same between
the foreground (S) and background (B). This normalization
is then applied to other !η intervals. Each 1D correlation
function is expanded into a Fourier series according to Eq. (2),
with coefficients vn,n calculated directly via a discrete Fourier
transformation (DFT):

vn,n = ⟨cos n!φ⟩ =
∑N

m=1 cos(n!φm)C(!φm)
∑N

m=1 C(!φm)
, (16)

where n = 1–15, and N = 200 is the number of !φ bins. A
small upward relative correction is applied (∼0.15% for n = 6
and increasing to 1% for n = 15) to account for the finite
!φ bin width. Figure 2(b) shows one such 1D correlation
function for 2 < |!η| < 5, overlaid with the corresponding
contributions from individual vn,n components. The shape of
the correlation function is well described by the sum of the
first six vn,n components.

According to Eq. (4), if the correlations are dominated by
those arising from asymmetry of the initial geometry such
as flow, vn,n should factorize into the product of two single-
particle harmonic coefficients. This is found to be the case for
n ! 2 at low pT for pairs with a large !η gap, but is not true for
n = 1 (see Secs. V B and V C), similar to what was also found
in other measurements [39,40]. Thus, if the two particles are
selected from the same pT interval (“fixed-pT” correlations) as
in Fig. 2, the single-particle vn for n ! 2 can be calculated as
vn = √

vn,n. When vn,n < 0, vn is defined as vn = −
√

|vn,n| (or
vn = vn,n/

√
|vn,n| in general). This calculation is repeated for

all 1D correlation functions in each |!η| slice. The resulting
full |!η| dependencies of vn,n and vn are shown in Figs. 2(c)
and 2(d), respectively.

The vn,n and vn values are found to vary rapidly for
|!η| " 1, presumably reflecting the influence of the short-
range correlation at (!φ,!η) ∼ (0, 0) [Fig. 2(a)], but they
decrease much more slowly for larger |!η|. This slow decrease
is expected because the single-particle vn also decreases very
slowly with η (see Fig. 3), and the factorization relation
Eq. (4) is valid for the present pT range (see Sec. V B). These
behaviors suggest that the autocorrelations from near-side jet
fragmentation and resonance decays can be largely eliminated
by requiring a large !η gap (e.g., |!η| > 2).

Each “fixed-pT” correlation function provides a reference
vn for a chosen pT range (denoted by superscript “a”). Tracks
from this pT range are then correlated with those from a target
pT range (denoted by superscript “b”), and this “mixed-pT”
correlation is used to calculate vn,n and to obtain the vn in the
target pT via Eq. (4). Because factorization is expected to be
valid for the anisotropies driven by the initial geometry, but
is broken by the presence of autocorrelations among the jet
fragmentation products, the level of consistency between vn

obtained from different reference pT ranges reveals whether
the 2PC is dominated by anisotropies driven by the initial
geometry. A detailed study of the factorization properties of
v1–v6 is presented in Sec. V B.

The correlation function relies on the pair acceptance
function to reproduce and cancel the detector acceptance
effects in the foreground distribution. Mathematically, the
pair acceptance function in !φ is simply a convolution
of two single-particle azimuthal distributions and should be
uniform in !φ without detector imperfections. A natural way
of quantifying the influence of detector effects on vn,n and
vn is to transform the single-particle and pair acceptance
functions into the Fourier space. The resulting coefficients
for pair acceptance vdet

n,n are the product of those for the two
single-particle acceptances vdet,a

n and vdet,b
n . In general, the

pair acceptance function is quite flat: The maximum variation
from its average is observed to be less than 0.001 for pairs
integrated over 2 < |!η| < 5, and the corresponding |vdet

n,n|
values are found to be less than 1.5 × 10−4. These vdet

n,n values
are expected to mostly cancel in the correlation function, and
only a small fraction contributes to the uncertainties of the pair
acceptance function. Three possible residual effects for vdet

n,n are
studied: (1) the time dependence of the pair acceptance, (2) the
effect of imperfect centrality matching, and (3) the effect of
imperfect zvtx matching. In each case, the residual vdet

n,n values
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Other important details of our analysis are as follows.
Unless otherwise noted, #switch ¼ 0:2 fm=c. We employ
the s95p-PCE equation of state, obtained from fits to
lattice quantum chromodynamics (QCD) results and a
hadron resonance gas model [30], with partial chemical
equilibrium (PCE) setting in below a temperature TPCE ¼
150 MeV. Kinetic freeze-out occurs at TFO ¼ 120 MeV.
At this temperature, we implement the Cooper-Frye pre-
scription [31] for computing particle spectra. Unless other-
wise noted, shown results include decays from resonances
of masses up to 1.3 GeV.

A novel feature of our study is the determination of
centrality classes using the multiplicity distribution of
gluons much like the procedure followed by the heavy
ion experiments [32]. The gluon multiplicity distribution
is shown in Fig. 1. Centrality classes are determined from
the fraction of the integral over this distribution, beginning
with integrating from the right. As a consequence of
implementing this centrality selection, we properly
account for impact parameter and multiplicity fluctuations.

Because entropy is produced during the viscous hydro-
dynamic evolution, we need to adjust the normalization of
the initial energy density commensurately to describe the
final particle spectra [33]. The obtained pT spectra of

pions, kaons, and protons are shown for 0%–5% central
collisions at

ffiffiffi
s

p ¼ 2:76 TeV=nucleon, using the shear vis-
cosity to entropy density ratio $=s ¼ 0:2, in Fig. 2, and
compared to data from ALICE [34]. The results are for
averages over only 20 events in this case, but statistical
errors are smaller than the linewidth for the spectra.
Overall, the agreement with experimental data is good.
However, soft pions at pT < 300 MeV are underestimated.
We determine v1 to v5 in every event by first determin-

ing the exact event plane [35,36]

c n ¼
1

n
arctan

hsinðn%Þi
hcosðn%Þi ; (1)

and then computing

vnðpTÞ ¼ hcosðnð%$ c nÞÞi

%
R
d%fðpT;%Þ cosðnð%$ c nÞÞR

d%fðpT;%Þ ; (2)

where fðpT;%Þ are the thermal distribution functions with
viscous corrections obtained in the Cooper-Frye approach
(with additional contributions from resonance decays).
We first present the root-mean-square (rms) vnðpTÞ for

10%–20% central collisions and compare to experimental
data from the ATLAS Collaboration [4] in Fig. 3.
Agreement for v2–v5 is excellent. Note that the vn from
the experimental event-plane method used by ATLAS
agree well with the rms values [37]. We also find excellent
agreement over the whole studied centrality range when
comparing the pT-integrated rms v2, v3, and v4 to the
available vnf2g (obtained from two-particle correlations,
corresponding to the rms values) from the ALICE
Collaboration [3], as shown in Fig. 4.
We studied the effect of initial transverse flow included

in our framework by also computing vnðpTÞ with u! set to
zero at time #switch. The effect on hadron anisotropic flow
turns out to be extremely weak—results agree within sta-
tistical errors. Because photons are produced early on in
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Other important details of our analysis are as follows.
Unless otherwise noted, #switch ¼ 0:2 fm=c. We employ
the s95p-PCE equation of state, obtained from fits to
lattice quantum chromodynamics (QCD) results and a
hadron resonance gas model [30], with partial chemical
equilibrium (PCE) setting in below a temperature TPCE ¼
150 MeV. Kinetic freeze-out occurs at TFO ¼ 120 MeV.
At this temperature, we implement the Cooper-Frye pre-
scription [31] for computing particle spectra. Unless other-
wise noted, shown results include decays from resonances
of masses up to 1.3 GeV.

A novel feature of our study is the determination of
centrality classes using the multiplicity distribution of
gluons much like the procedure followed by the heavy
ion experiments [32]. The gluon multiplicity distribution
is shown in Fig. 1. Centrality classes are determined from
the fraction of the integral over this distribution, beginning
with integrating from the right. As a consequence of
implementing this centrality selection, we properly
account for impact parameter and multiplicity fluctuations.

Because entropy is produced during the viscous hydro-
dynamic evolution, we need to adjust the normalization of
the initial energy density commensurately to describe the
final particle spectra [33]. The obtained pT spectra of

pions, kaons, and protons are shown for 0%–5% central
collisions at

ffiffiffi
s

p ¼ 2:76 TeV=nucleon, using the shear vis-
cosity to entropy density ratio $=s ¼ 0:2, in Fig. 2, and
compared to data from ALICE [34]. The results are for
averages over only 20 events in this case, but statistical
errors are smaller than the linewidth for the spectra.
Overall, the agreement with experimental data is good.
However, soft pions at pT < 300 MeV are underestimated.
We determine v1 to v5 in every event by first determin-

ing the exact event plane [35,36]

c n ¼
1

n
arctan

hsinðn%Þi
hcosðn%Þi ; (1)

and then computing

vnðpTÞ ¼ hcosðnð%$ c nÞÞi

%
R
d%fðpT;%Þ cosðnð%$ c nÞÞR

d%fðpT;%Þ ; (2)

where fðpT;%Þ are the thermal distribution functions with
viscous corrections obtained in the Cooper-Frye approach
(with additional contributions from resonance decays).
We first present the root-mean-square (rms) vnðpTÞ for

10%–20% central collisions and compare to experimental
data from the ATLAS Collaboration [4] in Fig. 3.
Agreement for v2–v5 is excellent. Note that the vn from
the experimental event-plane method used by ATLAS
agree well with the rms values [37]. We also find excellent
agreement over the whole studied centrality range when
comparing the pT-integrated rms v2, v3, and v4 to the
available vnf2g (obtained from two-particle correlations,
corresponding to the rms values) from the ALICE
Collaboration [3], as shown in Fig. 4.
We studied the effect of initial transverse flow included

in our framework by also computing vnðpTÞ with u! set to
zero at time #switch. The effect on hadron anisotropic flow
turns out to be extremely weak—results agree within sta-
tistical errors. Because photons are produced early on in
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Other important details of our analysis are as follows.
Unless otherwise noted, #switch ¼ 0:2 fm=c. We employ
the s95p-PCE equation of state, obtained from fits to
lattice quantum chromodynamics (QCD) results and a
hadron resonance gas model [30], with partial chemical
equilibrium (PCE) setting in below a temperature TPCE ¼
150 MeV. Kinetic freeze-out occurs at TFO ¼ 120 MeV.
At this temperature, we implement the Cooper-Frye pre-
scription [31] for computing particle spectra. Unless other-
wise noted, shown results include decays from resonances
of masses up to 1.3 GeV.

A novel feature of our study is the determination of
centrality classes using the multiplicity distribution of
gluons much like the procedure followed by the heavy
ion experiments [32]. The gluon multiplicity distribution
is shown in Fig. 1. Centrality classes are determined from
the fraction of the integral over this distribution, beginning
with integrating from the right. As a consequence of
implementing this centrality selection, we properly
account for impact parameter and multiplicity fluctuations.

Because entropy is produced during the viscous hydro-
dynamic evolution, we need to adjust the normalization of
the initial energy density commensurately to describe the
final particle spectra [33]. The obtained pT spectra of

pions, kaons, and protons are shown for 0%–5% central
collisions at

ffiffiffi
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p ¼ 2:76 TeV=nucleon, using the shear vis-
cosity to entropy density ratio $=s ¼ 0:2, in Fig. 2, and
compared to data from ALICE [34]. The results are for
averages over only 20 events in this case, but statistical
errors are smaller than the linewidth for the spectra.
Overall, the agreement with experimental data is good.
However, soft pions at pT < 300 MeV are underestimated.
We determine v1 to v5 in every event by first determin-

ing the exact event plane [35,36]

c n ¼
1

n
arctan

hsinðn%Þi
hcosðn%Þi ; (1)

and then computing

vnðpTÞ ¼ hcosðnð%$ c nÞÞi

%
R
d%fðpT;%Þ cosðnð%$ c nÞÞR

d%fðpT;%Þ ; (2)

where fðpT;%Þ are the thermal distribution functions with
viscous corrections obtained in the Cooper-Frye approach
(with additional contributions from resonance decays).
We first present the root-mean-square (rms) vnðpTÞ for

10%–20% central collisions and compare to experimental
data from the ATLAS Collaboration [4] in Fig. 3.
Agreement for v2–v5 is excellent. Note that the vn from
the experimental event-plane method used by ATLAS
agree well with the rms values [37]. We also find excellent
agreement over the whole studied centrality range when
comparing the pT-integrated rms v2, v3, and v4 to the
available vnf2g (obtained from two-particle correlations,
corresponding to the rms values) from the ALICE
Collaboration [3], as shown in Fig. 4.
We studied the effect of initial transverse flow included

in our framework by also computing vnðpTÞ with u! set to
zero at time #switch. The effect on hadron anisotropic flow
turns out to be extremely weak—results agree within sta-
tistical errors. Because photons are produced early on in
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the collision, we expect a greater effect on photon aniso-
tropic flow; this will be examined in a subsequent work.
We emphasize that preequilibrium dynamics that is not
fully accounted for may still influence the amount of initial
transverse flow.

The effect of changing the switching time from !switch ¼
0:2 fm=c to !switch ¼ 0:4 fm=c is shown in Fig. 5. Results
agree within statistical errors, but tend to be slightly lower
for the later switching time. The nonlinear interactions of
classical fields become weaker as the system expands and
therefore Yang-Mills dynamics is less effective than hydro-
dynamics in building up flow at late times. Yet it is reassur-
ing that there is a window in time where both descriptions
produce equivalent results.

Because a constant "=s is at best a rough effective mea-
sure of the evolving shear viscosity to entropy density ratio,
we present results for a parametrized temperature dependent
"=s, following [38]. We use the same parametrization (HH-
HQ) as in Ref. [38,39] with a minimum of ð"=sÞðTÞ ¼ 0:08
at T ¼ 180 MeV, approximately at the crossover from
quark-gluon plasma to hadron gas in the used equation of

state. The result, compared to "=s ¼ 0:2 is shown for
20%–30% central collisions in Fig. 6. The results are indis-
tinguishable when studying just one collision energy. The
insensitivity of our results to two very different functional
forms may suggest that the development of flow is strongly
affected at intermediate times when"=s is very small. Also,
since second order viscous hydrodynamics breaks down
when!#$ is comparable to the ideal terms, our framework
may be inadequate for too large values of "=s.
We compare results for top RHIC energies, obtained

using a constant "=s ¼ 0:12, which is about 40% smaller
than the value at LHC, to experimental data fromSTAR [40]
and PHENIX [1] in Fig. 7. The data arewell described given
the systematic uncertainties in both the experimental and
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the collision, we expect a greater effect on photon aniso-
tropic flow; this will be examined in a subsequent work.
We emphasize that preequilibrium dynamics that is not
fully accounted for may still influence the amount of initial
transverse flow.

The effect of changing the switching time from !switch ¼
0:2 fm=c to !switch ¼ 0:4 fm=c is shown in Fig. 5. Results
agree within statistical errors, but tend to be slightly lower
for the later switching time. The nonlinear interactions of
classical fields become weaker as the system expands and
therefore Yang-Mills dynamics is less effective than hydro-
dynamics in building up flow at late times. Yet it is reassur-
ing that there is a window in time where both descriptions
produce equivalent results.

Because a constant "=s is at best a rough effective mea-
sure of the evolving shear viscosity to entropy density ratio,
we present results for a parametrized temperature dependent
"=s, following [38]. We use the same parametrization (HH-
HQ) as in Ref. [38,39] with a minimum of ð"=sÞðTÞ ¼ 0:08
at T ¼ 180 MeV, approximately at the crossover from
quark-gluon plasma to hadron gas in the used equation of

state. The result, compared to "=s ¼ 0:2 is shown for
20%–30% central collisions in Fig. 6. The results are indis-
tinguishable when studying just one collision energy. The
insensitivity of our results to two very different functional
forms may suggest that the development of flow is strongly
affected at intermediate times when"=s is very small. Also,
since second order viscous hydrodynamics breaks down
when!#$ is comparable to the ideal terms, our framework
may be inadequate for too large values of "=s.
We compare results for top RHIC energies, obtained

using a constant "=s ¼ 0:12, which is about 40% smaller
than the value at LHC, to experimental data fromSTAR [40]
and PHENIX [1] in Fig. 7. The data arewell described given
the systematic uncertainties in both the experimental and
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in approximately the same direction and thus having full pair ac-
ceptance (with a bin width of 0.3 in !η and π/16 in !φ). There-
fore, the ratio B(0,0)/B(!η,!φ) is the pair-acceptance correction
factor used to derive the corrected per-trigger-particle associated
yield distribution. The signal and background distributions are first
calculated for each event, and then averaged over all the events
within the track multiplicity class.

Each reconstructed track is weighted by the inverse of an effi-
ciency factor, which accounts for the detector acceptance, the re-
construction efficiency, and the fraction of misreconstructed tracks.
Detailed studies of tracking efficiencies using MC simulations and
data-based methods can be found in [23]. The combined geometri-
cal acceptance and efficiency for track reconstruction exceeds 50%
for pT ≈ 0.1 GeV/c and |η| < 2.4. The efficiency is greater than 90%
in the |η| < 1 region for pT > 0.6 GeV/c. For the multiplicity range
studied here, little or no dependence of the tracking efficiency on
multiplicity is found and the rate of misreconstructed tracks re-
mains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the
pythia, hijing and hydjet event generators, respectively, yield ef-
ficiency correction factors that vary due to the different kinematic
and mass distributions for the particles produced in these gen-
erators. Applying the resulting correction factors from one of the
generators to simulated data from one of the others gives asso-
ciated yield distributions that agree within 5%. Systematic uncer-
tainties due to track quality cuts and potential contributions from
secondary particles (including those from weak decays) are exam-
ined by loosening or tightening the track selections on dz/σ (dz)
and dT /σ (dT ) from 2 to 5. The associated yields are found to be
insensitive to these track selections within 2%.

5. Results

Fig. 1 compares 2-D two-particle correlation functions for
events with low (a) and high (b) multiplicity, for pairs of charged
particles with 1 < pT < 3 GeV/c. For the low-multiplicity selec-
tion (Noffline

trk < 35), the dominant features are the correlation peak
near (!η,!φ) = (0,0) for pairs of particles originating from the
same jet and the elongated structure at !φ ≈ π for pairs of parti-
cles from back-to-back jets. To better illustrate the full correlation
structure, the jet peak has been truncated. High-multiplicity events
(Noffline

trk ! 110) also show the same-side jet peak and back-to-
back correlation structures. However, in addition, a pronounced
“ridge”-like structure emerges at !φ ≈ 0 extending to |!η| of at
least 4 units. This observed structure is similar to that seen in
high-multiplicity pp collision data at

√
s = 7 TeV [17] and in AA

collisions over a wide range of energies [3–10].
As a cross-check, correlation functions were also generated for

tracks paired with ECAL photons, which originate primarily from
decays of π0s, and for pairs of ECAL photons. These distributions
showed similar features as those seen in Fig. 1, in particular the
ridge-like correlation for high multiplicity events.

To investigate the long-range, near-side correlations in finer
detail, and to provide a quantitative comparison to pp results,
one-dimensional (1-D) distributions in !φ are found by averag-
ing the signal and background two-dimensional (2-D) distributions
over 2 < |!η| < 4 [7,8,17]. In the presence of multiple sources of
correlations, the yield for the correlation of interest is commonly
estimated using an implementation of the zero-yield-at-minimum
(ZYAM) method [26]. A second-order polynomial is first fitted to
the 1-D !φ correlation function in the region 0.1 < |!φ| < 2. The
minimum value of the polynomial, CZYAM, is then subtracted from
the 1-D !φ correlation function as a constant background (con-
taining no information about correlations) to shift its minimum
to be at zero associated yield. The statistical uncertainty on the

Fig. 1. 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of
charged particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity
events (Noffline

trk < 35) and (b) for a high-multiplicity selection (Noffline
trk ! 110). The

sharp near-side peaks from jet correlations have been truncated to better illustrate
the structure outside that region.

minimum level of 1
Ntrig

dNpair

d!φ obtained by the ZYAM procedure as
well as the deviations found by varying the fit range in !φ give
an absolute uncertainty of ±0.0015 on the associated yield, inde-
pendent of multiplicity and pT.

Fig. 2 shows the results for pPb data (solid circles) for various
selections in pT and multiplicity Noffline

trk , with pT increasing from
left to right and multiplicity increasing from top to bottom. The
results for pp data at

√
s = 7 TeV, obtained using the same proce-

dure [17], are also plotted (open circles).
A clear evolution of the !φ correlation function as a function

of both pT and Noffline
trk is observed. For the lowest multiplicity se-

lection in pp and pPb the correlation functions have a minimum
at !φ = 0 and a maximum at !φ = π , reflecting the correla-
tions from momentum conservation and the increasing contribu-
tion from back-to-back jet-like correlations at higher pT. Results
from the hijing [24] model (version 1.383), shown as dashed lines,
qualitatively reproduce the shape of the correlation function for
low Noffline

trk .
For multiplicities Noffline

trk ! 35, a second local maximum near
|!φ| ≈ 0 emerges in the pPb data, corresponding to the near-side,
long-range ridge-like structure. In pp data, this second maximum
is clearly visible only for Noffline

trk > 90. For both pp and pPb col-
lisions, this near-side correlated yield is largest in the 1 < pT <
2 GeV/c range and increases with increasing multiplicity. While
the evolution of the correlation function is qualitatively similar in
pp and pPb data, the absolute near-side correlated yield is signifi-
cantly larger in the pPb case.

In contrast to the data, the hijing calculations show a correlated
yield of zero at !φ = 0 for all multiplicity and pT selections. The
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in approximately the same direction and thus having full pair ac-
ceptance (with a bin width of 0.3 in !η and π/16 in !φ). There-
fore, the ratio B(0,0)/B(!η,!φ) is the pair-acceptance correction
factor used to derive the corrected per-trigger-particle associated
yield distribution. The signal and background distributions are first
calculated for each event, and then averaged over all the events
within the track multiplicity class.

Each reconstructed track is weighted by the inverse of an effi-
ciency factor, which accounts for the detector acceptance, the re-
construction efficiency, and the fraction of misreconstructed tracks.
Detailed studies of tracking efficiencies using MC simulations and
data-based methods can be found in [23]. The combined geometri-
cal acceptance and efficiency for track reconstruction exceeds 50%
for pT ≈ 0.1 GeV/c and |η| < 2.4. The efficiency is greater than 90%
in the |η| < 1 region for pT > 0.6 GeV/c. For the multiplicity range
studied here, little or no dependence of the tracking efficiency on
multiplicity is found and the rate of misreconstructed tracks re-
mains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the
pythia, hijing and hydjet event generators, respectively, yield ef-
ficiency correction factors that vary due to the different kinematic
and mass distributions for the particles produced in these gen-
erators. Applying the resulting correction factors from one of the
generators to simulated data from one of the others gives asso-
ciated yield distributions that agree within 5%. Systematic uncer-
tainties due to track quality cuts and potential contributions from
secondary particles (including those from weak decays) are exam-
ined by loosening or tightening the track selections on dz/σ (dz)
and dT /σ (dT ) from 2 to 5. The associated yields are found to be
insensitive to these track selections within 2%.

5. Results

Fig. 1 compares 2-D two-particle correlation functions for
events with low (a) and high (b) multiplicity, for pairs of charged
particles with 1 < pT < 3 GeV/c. For the low-multiplicity selec-
tion (Noffline

trk < 35), the dominant features are the correlation peak
near (!η,!φ) = (0,0) for pairs of particles originating from the
same jet and the elongated structure at !φ ≈ π for pairs of parti-
cles from back-to-back jets. To better illustrate the full correlation
structure, the jet peak has been truncated. High-multiplicity events
(Noffline

trk ! 110) also show the same-side jet peak and back-to-
back correlation structures. However, in addition, a pronounced
“ridge”-like structure emerges at !φ ≈ 0 extending to |!η| of at
least 4 units. This observed structure is similar to that seen in
high-multiplicity pp collision data at

√
s = 7 TeV [17] and in AA

collisions over a wide range of energies [3–10].
As a cross-check, correlation functions were also generated for

tracks paired with ECAL photons, which originate primarily from
decays of π0s, and for pairs of ECAL photons. These distributions
showed similar features as those seen in Fig. 1, in particular the
ridge-like correlation for high multiplicity events.

To investigate the long-range, near-side correlations in finer
detail, and to provide a quantitative comparison to pp results,
one-dimensional (1-D) distributions in !φ are found by averag-
ing the signal and background two-dimensional (2-D) distributions
over 2 < |!η| < 4 [7,8,17]. In the presence of multiple sources of
correlations, the yield for the correlation of interest is commonly
estimated using an implementation of the zero-yield-at-minimum
(ZYAM) method [26]. A second-order polynomial is first fitted to
the 1-D !φ correlation function in the region 0.1 < |!φ| < 2. The
minimum value of the polynomial, CZYAM, is then subtracted from
the 1-D !φ correlation function as a constant background (con-
taining no information about correlations) to shift its minimum
to be at zero associated yield. The statistical uncertainty on the

Fig. 1. 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of
charged particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity
events (Noffline

trk < 35) and (b) for a high-multiplicity selection (Noffline
trk ! 110). The

sharp near-side peaks from jet correlations have been truncated to better illustrate
the structure outside that region.

minimum level of 1
Ntrig

dNpair

d!φ obtained by the ZYAM procedure as
well as the deviations found by varying the fit range in !φ give
an absolute uncertainty of ±0.0015 on the associated yield, inde-
pendent of multiplicity and pT.

Fig. 2 shows the results for pPb data (solid circles) for various
selections in pT and multiplicity Noffline

trk , with pT increasing from
left to right and multiplicity increasing from top to bottom. The
results for pp data at

√
s = 7 TeV, obtained using the same proce-

dure [17], are also plotted (open circles).
A clear evolution of the !φ correlation function as a function

of both pT and Noffline
trk is observed. For the lowest multiplicity se-

lection in pp and pPb the correlation functions have a minimum
at !φ = 0 and a maximum at !φ = π , reflecting the correla-
tions from momentum conservation and the increasing contribu-
tion from back-to-back jet-like correlations at higher pT. Results
from the hijing [24] model (version 1.383), shown as dashed lines,
qualitatively reproduce the shape of the correlation function for
low Noffline

trk .
For multiplicities Noffline

trk ! 35, a second local maximum near
|!φ| ≈ 0 emerges in the pPb data, corresponding to the near-side,
long-range ridge-like structure. In pp data, this second maximum
is clearly visible only for Noffline

trk > 90. For both pp and pPb col-
lisions, this near-side correlated yield is largest in the 1 < pT <
2 GeV/c range and increases with increasing multiplicity. While
the evolution of the correlation function is qualitatively similar in
pp and pPb data, the absolute near-side correlated yield is signifi-
cantly larger in the pPb case.

In contrast to the data, the hijing calculations show a correlated
yield of zero at !φ = 0 for all multiplicity and pT selections. The
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in approximately the same direction and thus having full pair ac-
ceptance (with a bin width of 0.3 in !η and π/16 in !φ). There-
fore, the ratio B(0,0)/B(!η,!φ) is the pair-acceptance correction
factor used to derive the corrected per-trigger-particle associated
yield distribution. The signal and background distributions are first
calculated for each event, and then averaged over all the events
within the track multiplicity class.

Each reconstructed track is weighted by the inverse of an effi-
ciency factor, which accounts for the detector acceptance, the re-
construction efficiency, and the fraction of misreconstructed tracks.
Detailed studies of tracking efficiencies using MC simulations and
data-based methods can be found in [23]. The combined geometri-
cal acceptance and efficiency for track reconstruction exceeds 50%
for pT ≈ 0.1 GeV/c and |η| < 2.4. The efficiency is greater than 90%
in the |η| < 1 region for pT > 0.6 GeV/c. For the multiplicity range
studied here, little or no dependence of the tracking efficiency on
multiplicity is found and the rate of misreconstructed tracks re-
mains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the
pythia, hijing and hydjet event generators, respectively, yield ef-
ficiency correction factors that vary due to the different kinematic
and mass distributions for the particles produced in these gen-
erators. Applying the resulting correction factors from one of the
generators to simulated data from one of the others gives asso-
ciated yield distributions that agree within 5%. Systematic uncer-
tainties due to track quality cuts and potential contributions from
secondary particles (including those from weak decays) are exam-
ined by loosening or tightening the track selections on dz/σ (dz)
and dT /σ (dT ) from 2 to 5. The associated yields are found to be
insensitive to these track selections within 2%.

5. Results

Fig. 1 compares 2-D two-particle correlation functions for
events with low (a) and high (b) multiplicity, for pairs of charged
particles with 1 < pT < 3 GeV/c. For the low-multiplicity selec-
tion (Noffline

trk < 35), the dominant features are the correlation peak
near (!η,!φ) = (0,0) for pairs of particles originating from the
same jet and the elongated structure at !φ ≈ π for pairs of parti-
cles from back-to-back jets. To better illustrate the full correlation
structure, the jet peak has been truncated. High-multiplicity events
(Noffline

trk ! 110) also show the same-side jet peak and back-to-
back correlation structures. However, in addition, a pronounced
“ridge”-like structure emerges at !φ ≈ 0 extending to |!η| of at
least 4 units. This observed structure is similar to that seen in
high-multiplicity pp collision data at

√
s = 7 TeV [17] and in AA

collisions over a wide range of energies [3–10].
As a cross-check, correlation functions were also generated for

tracks paired with ECAL photons, which originate primarily from
decays of π0s, and for pairs of ECAL photons. These distributions
showed similar features as those seen in Fig. 1, in particular the
ridge-like correlation for high multiplicity events.

To investigate the long-range, near-side correlations in finer
detail, and to provide a quantitative comparison to pp results,
one-dimensional (1-D) distributions in !φ are found by averag-
ing the signal and background two-dimensional (2-D) distributions
over 2 < |!η| < 4 [7,8,17]. In the presence of multiple sources of
correlations, the yield for the correlation of interest is commonly
estimated using an implementation of the zero-yield-at-minimum
(ZYAM) method [26]. A second-order polynomial is first fitted to
the 1-D !φ correlation function in the region 0.1 < |!φ| < 2. The
minimum value of the polynomial, CZYAM, is then subtracted from
the 1-D !φ correlation function as a constant background (con-
taining no information about correlations) to shift its minimum
to be at zero associated yield. The statistical uncertainty on the

Fig. 1. 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of
charged particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity
events (Noffline

trk < 35) and (b) for a high-multiplicity selection (Noffline
trk ! 110). The

sharp near-side peaks from jet correlations have been truncated to better illustrate
the structure outside that region.

minimum level of 1
Ntrig

dNpair

d!φ obtained by the ZYAM procedure as
well as the deviations found by varying the fit range in !φ give
an absolute uncertainty of ±0.0015 on the associated yield, inde-
pendent of multiplicity and pT.

Fig. 2 shows the results for pPb data (solid circles) for various
selections in pT and multiplicity Noffline

trk , with pT increasing from
left to right and multiplicity increasing from top to bottom. The
results for pp data at

√
s = 7 TeV, obtained using the same proce-

dure [17], are also plotted (open circles).
A clear evolution of the !φ correlation function as a function

of both pT and Noffline
trk is observed. For the lowest multiplicity se-

lection in pp and pPb the correlation functions have a minimum
at !φ = 0 and a maximum at !φ = π , reflecting the correla-
tions from momentum conservation and the increasing contribu-
tion from back-to-back jet-like correlations at higher pT. Results
from the hijing [24] model (version 1.383), shown as dashed lines,
qualitatively reproduce the shape of the correlation function for
low Noffline

trk .
For multiplicities Noffline

trk ! 35, a second local maximum near
|!φ| ≈ 0 emerges in the pPb data, corresponding to the near-side,
long-range ridge-like structure. In pp data, this second maximum
is clearly visible only for Noffline

trk > 90. For both pp and pPb col-
lisions, this near-side correlated yield is largest in the 1 < pT <
2 GeV/c range and increases with increasing multiplicity. While
the evolution of the correlation function is qualitatively similar in
pp and pPb data, the absolute near-side correlated yield is signifi-
cantly larger in the pPb case.

In contrast to the data, the hijing calculations show a correlated
yield of zero at !φ = 0 for all multiplicity and pT selections. The
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FIG. 3. Distributions of per-trigger yield in the peripheral and
the central event activity classes and their differences (solid
symbols), for different ranges of paT and 0.5 < pbT < 4 GeV,
together with functions a0 + 2a2 cos 2∆φ (solid line) and
a0 + 2a2 cos 2∆φ + 2a3 cos 3∆φ (dashed line) obtained via a
Fourier decomposition (see text). The values for the ZYAM-
determined pedestal levels are indicated on each panel for
peripheral (bP

ZYAM
) and central (bC

ZYAM
) ΣEPb

T bins.

A similar dependence is observed for long-range corre-
lations in Pb+Pb collisions at approximately the same
pT [22, 23].
The relative amplitude of the cosn∆φ modulation of

∆Y (∆φ), cn, for n = 2, 3 can be estimated using an, and
the extracted value of b

ZYAM
for central events:

cn = an/(b
C
ZYAM

+ a0). (3)

Figure 4(e) shows c2 and c3 as a function of paT for
0.5 < pbT < 4 GeV. The value of c2 is much larger
than c3 and exhibits a behavior similar to ∆Y (∆φ)
at the near-side and away-side. Using the tech-
niques discussed in Ref. [23], cn can be converted
into an estimate of sn, the average nth Fourier coef-
ficient of the event-by-event single-particle φ distribu-
tion, by assuming the factorization relation cn(paT, p

b
T) =

sn(paT)sn(p
b
T). From this, sn(paT) is calculated as

sn(paT) = cn(paT, p
b
T)/

√

cn(pbT, p
b
T), where cn(pbT, p

b
T) is

obtained from Eq. (3) using the an extracted from the
difference between the central and peripheral data shown
in Fig. 2(c). The s2(paT) values obtained this way ex-
ceed 0.1 at pT ∼ 2–4 GeV, as shown in Fig. 4(f). The
s3(paT) values are smaller than s2(paT) over the measured
pT range. The factorization relation used to compute
s2(paT) is found to be valid within 10%–20% when select-
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FIG. 4. Integrated per-trigger yields, Yint(see text), vs paT
for 0.5 < pbT < 4 GeV in peripheral and central events, on
the (a) near-side and (b) away-side. The panels (c) and (d)
show the difference, ∆Yint. Panels (e) and (f) show the pT
dependence of cn and sn for n=2,3, respectively. The error
bars and shaded boxes represent the statistical and systematic
uncertainties, respectively.

ing different sub-ranges of pbT within 0.5–4 GeV, while the
precision of s3(paT) data does not allow a quantitative test
of the factorization. The analysis is also repeated for cor-
relation functions separately constructed from like-sign
pairs and unlike-sign pairs, and the resulting cn and sn
coefficients are found to be consistent within their statis-
tical and systematic uncertainties.

In summary, ATLAS has measured two-particle corre-
lation functions in

√
sNN = 5.02 TeV p+Pb collisions in

different intervals of ΣEPb

T over 2 < |∆η| < 5. An away-
side contribution is observed that grows rapidly with in-
creasingΣEPb

T and which matches many essential features
of the near-side ridge observed here, as well as in previ-
ous high-multiplicity p+ p, p+Pb and Pb+Pb data at
the LHC. Thus, while the ridge in p+ p and p+Pb colli-
sions has been characterized as a near-side phenomenon,
these results show that it has both near-side and away-
side components that are symmetric around ∆φ ∼ π/2,
with a ∆φ dependence that is approximately described
by a cos 2∆φ modulation. A Fourier decomposition of
the correlation function, C(∆φ), yields a pair cos 2∆φ
amplitude of about 0.01 at pT ∼ 3 GeV, correspond-
ing to a single-particle amplitude of about 0.1. Similar

v n

pPb
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symbols), for different ranges of paT and 0.5 < pbT < 4 GeV,
together with functions a0 + 2a2 cos 2∆φ (solid line) and
a0 + 2a2 cos 2∆φ + 2a3 cos 3∆φ (dashed line) obtained via a
Fourier decomposition (see text). The values for the ZYAM-
determined pedestal levels are indicated on each panel for
peripheral (bP
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) and central (bC

ZYAM
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A similar dependence is observed for long-range corre-
lations in Pb+Pb collisions at approximately the same
pT [22, 23].
The relative amplitude of the cosn∆φ modulation of

∆Y (∆φ), cn, for n = 2, 3 can be estimated using an, and
the extracted value of b

ZYAM
for central events:

cn = an/(b
C
ZYAM

+ a0). (3)

Figure 4(e) shows c2 and c3 as a function of paT for
0.5 < pbT < 4 GeV. The value of c2 is much larger
than c3 and exhibits a behavior similar to ∆Y (∆φ)
at the near-side and away-side. Using the tech-
niques discussed in Ref. [23], cn can be converted
into an estimate of sn, the average nth Fourier coef-
ficient of the event-by-event single-particle φ distribu-
tion, by assuming the factorization relation cn(paT, p

b
T) =

sn(paT)sn(p
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T). From this, sn(paT) is calculated as

sn(paT) = cn(paT, p
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T)/

√

cn(pbT, p
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T), where cn(pbT, p

b
T) is

obtained from Eq. (3) using the an extracted from the
difference between the central and peripheral data shown
in Fig. 2(c). The s2(paT) values obtained this way ex-
ceed 0.1 at pT ∼ 2–4 GeV, as shown in Fig. 4(f). The
s3(paT) values are smaller than s2(paT) over the measured
pT range. The factorization relation used to compute
s2(paT) is found to be valid within 10%–20% when select-
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FIG. 4. Integrated per-trigger yields, Yint(see text), vs paT
for 0.5 < pbT < 4 GeV in peripheral and central events, on
the (a) near-side and (b) away-side. The panels (c) and (d)
show the difference, ∆Yint. Panels (e) and (f) show the pT
dependence of cn and sn for n=2,3, respectively. The error
bars and shaded boxes represent the statistical and systematic
uncertainties, respectively.

ing different sub-ranges of pbT within 0.5–4 GeV, while the
precision of s3(paT) data does not allow a quantitative test
of the factorization. The analysis is also repeated for cor-
relation functions separately constructed from like-sign
pairs and unlike-sign pairs, and the resulting cn and sn
coefficients are found to be consistent within their statis-
tical and systematic uncertainties.

In summary, ATLAS has measured two-particle corre-
lation functions in

√
sNN = 5.02 TeV p+Pb collisions in

different intervals of ΣEPb

T over 2 < |∆η| < 5. An away-
side contribution is observed that grows rapidly with in-
creasingΣEPb

T and which matches many essential features
of the near-side ridge observed here, as well as in previ-
ous high-multiplicity p+ p, p+Pb and Pb+Pb data at
the LHC. Thus, while the ridge in p+ p and p+Pb colli-
sions has been characterized as a near-side phenomenon,
these results show that it has both near-side and away-
side components that are symmetric around ∆φ ∼ π/2,
with a ∆φ dependence that is approximately described
by a cos 2∆φ modulation. A Fourier decomposition of
the correlation function, C(∆φ), yields a pair cos 2∆φ
amplitude of about 0.01 at pT ∼ 3 GeV, correspond-
ing to a single-particle amplitude of about 0.1. Similar

v n

pPb

u!T
!"
CYM ¼ "u", using the fact that u! is a timelike eigen-

vector of T!"
CYM and satisfies u2 ¼ 1.

Other important details of our analysis are as follows.
Unless otherwise noted, #switch ¼ 0:2 fm=c. We employ
the s95p-PCE equation of state, obtained from fits to
lattice quantum chromodynamics (QCD) results and a
hadron resonance gas model [30], with partial chemical
equilibrium (PCE) setting in below a temperature TPCE ¼
150 MeV. Kinetic freeze-out occurs at TFO ¼ 120 MeV.
At this temperature, we implement the Cooper-Frye pre-
scription [31] for computing particle spectra. Unless other-
wise noted, shown results include decays from resonances
of masses up to 1.3 GeV.

A novel feature of our study is the determination of
centrality classes using the multiplicity distribution of
gluons much like the procedure followed by the heavy
ion experiments [32]. The gluon multiplicity distribution
is shown in Fig. 1. Centrality classes are determined from
the fraction of the integral over this distribution, beginning
with integrating from the right. As a consequence of
implementing this centrality selection, we properly
account for impact parameter and multiplicity fluctuations.

Because entropy is produced during the viscous hydro-
dynamic evolution, we need to adjust the normalization of
the initial energy density commensurately to describe the
final particle spectra [33]. The obtained pT spectra of

pions, kaons, and protons are shown for 0%–5% central
collisions at

ffiffiffi
s

p ¼ 2:76 TeV=nucleon, using the shear vis-
cosity to entropy density ratio $=s ¼ 0:2, in Fig. 2, and
compared to data from ALICE [34]. The results are for
averages over only 20 events in this case, but statistical
errors are smaller than the linewidth for the spectra.
Overall, the agreement with experimental data is good.
However, soft pions at pT < 300 MeV are underestimated.
We determine v1 to v5 in every event by first determin-

ing the exact event plane [35,36]

c n ¼
1

n
arctan

hsinðn%Þi
hcosðn%Þi ; (1)

and then computing

vnðpTÞ ¼ hcosðnð%$ c nÞÞi

%
R
d%fðpT;%Þ cosðnð%$ c nÞÞR

d%fðpT;%Þ ; (2)

where fðpT;%Þ are the thermal distribution functions with
viscous corrections obtained in the Cooper-Frye approach
(with additional contributions from resonance decays).
We first present the root-mean-square (rms) vnðpTÞ for

10%–20% central collisions and compare to experimental
data from the ATLAS Collaboration [4] in Fig. 3.
Agreement for v2–v5 is excellent. Note that the vn from
the experimental event-plane method used by ATLAS
agree well with the rms values [37]. We also find excellent
agreement over the whole studied centrality range when
comparing the pT-integrated rms v2, v3, and v4 to the
available vnf2g (obtained from two-particle correlations,
corresponding to the rms values) from the ALICE
Collaboration [3], as shown in Fig. 4.
We studied the effect of initial transverse flow included

in our framework by also computing vnðpTÞ with u! set to
zero at time #switch. The effect on hadron anisotropic flow
turns out to be extremely weak—results agree within sta-
tistical errors. Because photons are produced early on in
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FIG. 1 (color online). Gluon multiplicity distribution in the
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A similar dependence is observed for long-range corre-
lations in Pb+Pb collisions at approximately the same
pT [22, 23].
The relative amplitude of the cosn∆φ modulation of

∆Y (∆φ), cn, for n = 2, 3 can be estimated using an, and
the extracted value of b

ZYAM
for central events:

cn = an/(b
C
ZYAM

+ a0). (3)

Figure 4(e) shows c2 and c3 as a function of paT for
0.5 < pbT < 4 GeV. The value of c2 is much larger
than c3 and exhibits a behavior similar to ∆Y (∆φ)
at the near-side and away-side. Using the tech-
niques discussed in Ref. [23], cn can be converted
into an estimate of sn, the average nth Fourier coef-
ficient of the event-by-event single-particle φ distribu-
tion, by assuming the factorization relation cn(paT, p

b
T) =

sn(paT)sn(p
b
T). From this, sn(paT) is calculated as

sn(paT) = cn(paT, p
b
T)/

√

cn(pbT, p
b
T), where cn(pbT, p

b
T) is

obtained from Eq. (3) using the an extracted from the
difference between the central and peripheral data shown
in Fig. 2(c). The s2(paT) values obtained this way ex-
ceed 0.1 at pT ∼ 2–4 GeV, as shown in Fig. 4(f). The
s3(paT) values are smaller than s2(paT) over the measured
pT range. The factorization relation used to compute
s2(paT) is found to be valid within 10%–20% when select-
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FIG. 4. Integrated per-trigger yields, Yint(see text), vs paT
for 0.5 < pbT < 4 GeV in peripheral and central events, on
the (a) near-side and (b) away-side. The panels (c) and (d)
show the difference, ∆Yint. Panels (e) and (f) show the pT
dependence of cn and sn for n=2,3, respectively. The error
bars and shaded boxes represent the statistical and systematic
uncertainties, respectively.

ing different sub-ranges of pbT within 0.5–4 GeV, while the
precision of s3(paT) data does not allow a quantitative test
of the factorization. The analysis is also repeated for cor-
relation functions separately constructed from like-sign
pairs and unlike-sign pairs, and the resulting cn and sn
coefficients are found to be consistent within their statis-
tical and systematic uncertainties.

In summary, ATLAS has measured two-particle corre-
lation functions in

√
sNN = 5.02 TeV p+Pb collisions in

different intervals of ΣEPb

T over 2 < |∆η| < 5. An away-
side contribution is observed that grows rapidly with in-
creasingΣEPb

T and which matches many essential features
of the near-side ridge observed here, as well as in previ-
ous high-multiplicity p+ p, p+Pb and Pb+Pb data at
the LHC. Thus, while the ridge in p+ p and p+Pb colli-
sions has been characterized as a near-side phenomenon,
these results show that it has both near-side and away-
side components that are symmetric around ∆φ ∼ π/2,
with a ∆φ dependence that is approximately described
by a cos 2∆φ modulation. A Fourier decomposition of
the correlation function, C(∆φ), yields a pair cos 2∆φ
amplitude of about 0.01 at pT ∼ 3 GeV, correspond-
ing to a single-particle amplitude of about 0.1. Similar

v n

v2 & v3 very similar between pPb & PbPb! do they 
have a common origin?

pPb

u!T
!"
CYM ¼ "u", using the fact that u! is a timelike eigen-

vector of T!"
CYM and satisfies u2 ¼ 1.

Other important details of our analysis are as follows.
Unless otherwise noted, #switch ¼ 0:2 fm=c. We employ
the s95p-PCE equation of state, obtained from fits to
lattice quantum chromodynamics (QCD) results and a
hadron resonance gas model [30], with partial chemical
equilibrium (PCE) setting in below a temperature TPCE ¼
150 MeV. Kinetic freeze-out occurs at TFO ¼ 120 MeV.
At this temperature, we implement the Cooper-Frye pre-
scription [31] for computing particle spectra. Unless other-
wise noted, shown results include decays from resonances
of masses up to 1.3 GeV.

A novel feature of our study is the determination of
centrality classes using the multiplicity distribution of
gluons much like the procedure followed by the heavy
ion experiments [32]. The gluon multiplicity distribution
is shown in Fig. 1. Centrality classes are determined from
the fraction of the integral over this distribution, beginning
with integrating from the right. As a consequence of
implementing this centrality selection, we properly
account for impact parameter and multiplicity fluctuations.

Because entropy is produced during the viscous hydro-
dynamic evolution, we need to adjust the normalization of
the initial energy density commensurately to describe the
final particle spectra [33]. The obtained pT spectra of

pions, kaons, and protons are shown for 0%–5% central
collisions at

ffiffiffi
s

p ¼ 2:76 TeV=nucleon, using the shear vis-
cosity to entropy density ratio $=s ¼ 0:2, in Fig. 2, and
compared to data from ALICE [34]. The results are for
averages over only 20 events in this case, but statistical
errors are smaller than the linewidth for the spectra.
Overall, the agreement with experimental data is good.
However, soft pions at pT < 300 MeV are underestimated.
We determine v1 to v5 in every event by first determin-

ing the exact event plane [35,36]

c n ¼
1

n
arctan

hsinðn%Þi
hcosðn%Þi ; (1)

and then computing

vnðpTÞ ¼ hcosðnð%$ c nÞÞi

%
R
d%fðpT;%Þ cosðnð%$ c nÞÞR

d%fðpT;%Þ ; (2)

where fðpT;%Þ are the thermal distribution functions with
viscous corrections obtained in the Cooper-Frye approach
(with additional contributions from resonance decays).
We first present the root-mean-square (rms) vnðpTÞ for

10%–20% central collisions and compare to experimental
data from the ATLAS Collaboration [4] in Fig. 3.
Agreement for v2–v5 is excellent. Note that the vn from
the experimental event-plane method used by ATLAS
agree well with the rms values [37]. We also find excellent
agreement over the whole studied centrality range when
comparing the pT-integrated rms v2, v3, and v4 to the
available vnf2g (obtained from two-particle correlations,
corresponding to the rms values) from the ALICE
Collaboration [3], as shown in Fig. 4.
We studied the effect of initial transverse flow included

in our framework by also computing vnðpTÞ with u! set to
zero at time #switch. The effect on hadron anisotropic flow
turns out to be extremely weak—results agree within sta-
tistical errors. Because photons are produced early on in
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FIG. 1 (color online). Gluon multiplicity distribution in the
IP-Glasma model.
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geometry in AA & pA
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adding geometry to pA

20

pA dA

-10 -8 -6 -4 -2 0 2 4 6 8 10-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10-10

-8

-6

-4

-2

0

2

4

6

8

10



adding geometry to pA
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now test whether the v2 observed is related to 
geometry



v2: pPb & dAu
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dAu, pPb, AuAu & PbPb

• Glauber MC & pointlike centers to calculate ε2 
• → approximate scaling of v2/ε2 with dN/dη

22

PHENIX: 1303.1794

single trend, AA data understood as initial geometry 
+ hydrodynamics

PHENIX PRL 111 212301



variation of the small nucleus
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variation of the small nucleus
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variation of the small nucleus
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variation of the small nucleus
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variation of the small nucleus
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variation of the small nucleus
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variation of the small nucleus
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pA dA 3HeA
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very exciting to engineer the collision geometry in 
small systems at RHIC in the next few months!
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why is this so important?

• small scale structures are the most sensitive to viscosity
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why is this so important?

• small scale structures are the most sensitive to viscosity
• one of the biggest uncertainties on η/s is how the energy 

density is distributed in the initial state, pA, dA, He3A 
provide a new, powerful test of those models
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why is this so important?

• small scale structures are the most sensitive to viscosity
• one of the biggest uncertainties on η/s is how the energy 

density is distributed in the initial state, pA, dA, He3A 
provide a new, powerful test of those models

• more fundamentally, we are interested in how the QGP 
forms and why it behaves as it does;  

• any pA QGP will have a shorter lifetime, potentially 
more sensitive to how it is formed 

• hydrodynamic models are pushed to their limit for such 
small systems why do the data still look fluid-like? 

• if it’s not a QGP, what is going on and how does that 
impact understanding AA?
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conclusions

• many advances in determining the viscosity of the QGP 
• new surprises from pA collisions 
• new data very soon to test whether we are forming a very 

small QGP or something else…
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