Collective Effects in p-A \& A-A collisions

Anne M. Sickles

$\mathbb{T}_{\text {ILLINOIS }}$

 9/19/14
outline

outline

collide heavy nuclei: create \& study hot deconfined QCD: the quark gluon plasma

outline

collide heavy nuclei: create \& study hot deconfined QCD: the quark gluon plasma

highly asymmetric collisions:
turn off the plasma, study the nucleus

outline

collide heavy nuclei: create \& study hot deconfined QCD: the quark gluon plasma

highly asymmetric collisions:
turn off the plasma, study the nucleus

> or maybe not...

relativistic heavy ion collisions

quark gluon plasma

relativistic heavy ion collisions

quark gluon plasma

relativistic heavy ion collisions

quark gluon plasma

want to untangle QGP effects from effects of initial nucleus and hadronic matter

the aftermath

collision geometry

view: one nuclei going into the screen and one coming out
nucleon positions for the colliding nuclei for three different collisions

collision geometry

view: one nuclei going into the screen and one coming out
nucleon positions for the colliding nuclei for three different collisions

collision geometry

view: one nuclei going into the screen and one coming out
nucleon positions for the colliding nuclei for three different collisions

collision geometry

view: one nuclei going into the screen and one coming out
nucleon positions for the colliding nuclei for three different collisions

decreasing impact parameter

collision geometry

view: one nuclei going into the screen and one coming out
nucleon positions for the colliding nuclei for three different collisions

decreasing impact parameter

the overlap of the nuclei changes shape with impact parameter

collision geometry \rightarrow measured particles

initial collision geometry

collision geometry \rightarrow measured particles

initial collision geometry

collision geometry \rightarrow measured particles

initial collision geometry
measured hadron distributions

collision geometry \rightarrow measured particles

initial collision geometry
measured hadron distributions

the shape of the collisions is accessible in the particle distributions

strong interactions

- large observed anisotropies \rightarrow strong interactions:
- fluid behavior, hydrodynamics
- larger pressure gradients push more particles out in the x direction than in y

strong interactions

gradual
pressure change

- large observed anisotropies \rightarrow strong interactions:
- fluid behavior, hydrodynamics
- larger pressure gradients push more particles out in the x direction than in y

strong interactions

gradual
pressure
change

- large observed anisotropies \rightarrow strong interactions:
- fluid behavior, hydrodynamics
- larger pressure gradients push more particles out in the x direction than in y

strong interactions

gradual
pressure
change

dN

$$
\frac{1 v}{d \phi}=1+2 v_{2} \cos 2 \phi
$$

- large observed anisotropies \rightarrow strong interactions:
- fluid behavior, hydrodynamics
- larger pressure gradients push more particles out in the x direction than in y

characterizing the fluid

- large $\mathrm{v}_{2} \rightarrow$ viscosity is small

Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics

P. K. Kovtun, ${ }^{1}$ D. T. Son, ${ }^{2}$ and A. O. Starinets ${ }^{3}$

conjectured lower bound on viscosity / entropy density: $\eta / s>1 / 4 \pi$

characterizing the fluid

- large $\mathrm{v}_{2} \rightarrow$ viscosity is small

Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics

P. K. Kovtun, ${ }^{1}$ D. T. Son, ${ }^{2}$ and A. O. Starinets ${ }^{3}$

conjectured lower bound on
viscosity / entropy density: $\eta / s>1 / 4 \pi$

question: how does the QGP η / s compare to this bound?

viscometer: fine scale structure

viscometer: fine scale structure

viscometer: fine scale structure

$\eta / s=2 / 4 \pi$

fm/c

each event is unique

nucleon distributions for 3 single collisions (xy-plane)

not just v_{2} describing $\cos 2 \Phi$, but v_{n} :

$$
\frac{d N}{d \phi} \propto 1+\sum^{n} 2 v_{n} \cos n\left(\phi-\Psi_{n}\right)
$$

two particle correlations

jets in pp collisions

two particle correlations

jets in pp collisions

$\frac{d N_{A B}}{d \Delta \phi} \propto 1+\sum^{n} 2 v_{n, A} v_{n, B} \cos (n \Delta \phi)$

two particle correlations

jets in pp collisions

smoking gun: hydrodynamic correlations are long range η

correlations in PbPb

correlations in PbPb

correlations in PbPb

$v_{2}, v_{3}, v_{4} \ldots \rightarrow \eta / s$

$v_{2}, v_{3}, v_{4} \ldots \rightarrow \eta / s$

$v_{2}, v_{3}, v_{4} \ldots \rightarrow \eta / s$

Heavy lons @ RHIC \& the LHC

RHIC

200 GeV max collision energy

LHC

2.76 TeV max collision energy

Heavy Ions @ RHIC \& the LHC

RHIC

200 GeV max collision energy

LHC

2.76 TeV max collision energy
question: how does $\eta /$ s change with temperature?

state of the art hydrodynamic calculations

$$
\text { LHC: } \eta / s=2.5 / 4 \pi
$$

state of the art hydrodynamic calculations

RHIC: $\eta / s=1.5 / 4 \pi$

LHC: $\eta / s=2.5 / 4 \pi$

outline

collide heavy nuclei: create \& study hot deconfined QCD: the quark gluon plasma

highly asymmetric collisions:
turn off the plasma, study the nucleus

> or maybe not...

p-A collisions

peripheral collisions

p-A collisions

peripheral collisions

$\mathrm{CMS} \mathrm{pPb} \sqrt{\mathrm{s}_{\mathrm{NN}}}=5.02 \mathrm{TeV}, \mathrm{N}_{\mathrm{trk}}^{\text {offline }}<35$

central collisions

CMS PLB 718795 (2013)

$\mathrm{v}_{2} \& \mathrm{v} 3$ in pPb collisions

$\mathrm{v}_{2} \& \mathrm{v} 3$ in pPb collisions

pPb

$\mathrm{v}_{2} \& \mathrm{v} 3$ in pPb collisions

$\mathrm{V}_{2} \& \mathrm{~V}_{3}$ very similar between pPb \& PbPb! do they have a common origin?

geometry in $A A \& p A$

AA

geometry \& fluctuations

geometry in $A A \& p A$

AA

geometry \& fluctuations

pA

fluctuations

adding geometry to pA

pA

dA

adding geometry to pA

pA

dA

now test whether the v_{2} observed is related to geometry

v2: pPb \& dAu

$\mathrm{dAu}, \mathrm{pPb}, \mathrm{AuAu} \& \mathrm{PbPb}$

single trend, AA data understood as initial geometry

+ hydrodynamics

variation of the small nucleus

pA

dA

variation of the small nucleus

pA

dA

3HeA

variation of the small nucleus

pA

LHC

variation of the small nucleus

pA

LHC
dA

${ }^{3} \mathrm{HeA}$

RHIC

variation of the small nucleus

pA

LHC
dA

RHIC
${ }^{3} \mathrm{HeA}$

RHIC (6/14)

variation of the small nucleus

pA

LHC
RHIC (1/15)
dA

RHIC (6/14)

variation of the small nucleus

pA

LHC
RHIC (1/15)
dA

${ }^{3} \mathrm{HeA}$

RHIC (6/14)
very exciting to engineer the collision geometry in small systems at RHIC in the next few months!

why is this so important?

why is this so important?

- small scale structures are the most sensitive to viscosity

why is this so important?

- small scale structures are the most sensitive to viscosity
- one of the biggest uncertainties on η / s is how the energy density is distributed in the initial state, pA, dA, He3A provide a new, powerful test of those models

why is this so important?

- small scale structures are the most sensitive to viscosity
- one of the biggest uncertainties on η / s is how the energy density is distributed in the initial state, pA, dA, He 3 A provide a new, powerful test of those models
- more fundamentally, we are interested in how the QGP forms and why it behaves as it does;
- any pA QGP will have a shorter lifetime, potentially more sensitive to how it is formed
- hydrodynamic models are pushed to their limit for such small systems why do the data still look fluid-like?
- if it's not a QGP, what is going on and how does that impact understanding AA?

conclusions

${ }^{3} \mathrm{HeA}$

- many advances in determining the viscosity of the QGP
- new surprises from pA collisions
- new data very soon to test whether we are forming a very small QGP or something else...

