Positive Progress from Hard Scattering

 this is what you'd get when parton energy was equal to the jet energy and jets could be perfectly reconstructed

- this is what you'd get when parton energy was equal to the jet energy and jets could be perfectly reconstructed
- instead we have:

- this is what you'd get when parton energy was equal to the jet energy and jets could be perfectly reconstructed
- instead we have:
 - initial state effects: geometry, flow, shadowing, direct hadron production

- this is what you'd get when parton energy was equal to the jet energy and jets could be perfectly reconstructed
- instead we have:
 - initial state effects: geometry, flow, shadowing, direct hadron production
 - final state effects: recombination, in-medium hadron formation, Cronin effect

- this is what you'd get when parton energy was equal to the jet energy and jets could be perfectly reconstructed
- instead we have:
 - initial state effects: geometry, flow, shadowing, direct hadron production
 - final state effects: recombination, in-medium hadron formation, Cronin effect

these are worth understanding both for their own sake and for enabling us to disentangle parton-medium interactions

high pT particle production

Au+Au collisions

Parton Distribution Functions: Measured in Deep Inelastic Scattering

Hard Scattering Cross Section: Calculated with pQCD

> Parton-Medium Interactions & Hadronization

high pT particle production

Au+Au collisions

• γ_{direct}: initial hard scattering

- γ_{direct} : initial hard scattering
 - pT < 10GeV/c unmodified, pT > 10 GeV/c needs final results

- γ_{direct} : initial hard scattering
 - pT < 10GeV/c unmodified, pT > 10 GeV/c needs final results
- colored partons lose (a lot of) energy

- γ_{direct} : initial hard scattering
 - $p_T < 10 \text{GeV/c}$ unmodified, $p_T > 10 \text{ GeV/c}$ needs final results
- colored partons lose (a lot of) energy
 - how? where does it go?

- γ_{direct} : initial hard scattering
 - pT < 10GeV/c unmodified, pT > 10 GeV/c needs final results
- colored partons lose (a lot of) energy
 - how? where does it go?

how are we addressing these questions with the data in hand?

Spectra & Correlations

- one parton leads to many hadrons in the final state
- single and dihadron spectra are in some ways proxies for jets
 - introduce geometrical, energy loss and fragmentation biases
 - their power lies in their extreme simplicity

arXiv:0912.1871, arXiv:1002.1077, Zhang et al

Workshop on RHIC Paradigms

Anne M. Sickles

April 16, 2010

arXiv:0912.1871, arXiv:1002.1077, Zhang et al

Workshop on RHIC Paradigms

Anne M. Sickles

April 16, 2010

arXiv:0912.1871, arXiv:1002.1077, Zhang et al

Workshop on RHIC Paradigms

Anne M. Sickles

April 16, 2010

• ZOWW with $\varepsilon_0=1.68$

- ZOWW with $\varepsilon_0=1.68$
- n.b. RXNP plane dep. not done yet

Correlation Shapes

 visible ridge persists out to >4GeV/c triggers

- visible ridge persists out to >4GeV/c triggers
 - jet grows faster than ridge

- visible ridge persists out to >4GeV/c triggers
 - jet grows faster than ridge
- nearly flat in $\Delta \eta$ within STAR acceptance

- visible ridge persists out to >4GeV/c triggers
 - jet grows faster than ridge
- nearly flat in $\Delta \eta$ within STAR acceptance

PHOBOS, PRL 104 062301 (2010)

PHOBOS, PRL 104 062301 (2010)

PHOBOS, PRL 104 062301 (2010)

• suggests mechanisms in the initial state

PHOBOS, PRL 104 062301 (2010)

- suggests mechanisms in the initial state
- can it be directly related to the jet?

initial state related ridges

- ridge from EPOS flux tube initial conditions
- qualitatively similar to STAR measurements for hard ridge

- CGC flux tubes
- reasonable agreement with hard and soft ridge

y vs. ŋ

calculation from J. Nagle
y vs. ŋ

calculation from J. Nagle

y vs. ŋ

Workshop on RHIC Paradigms

April 16, 2010

shoulder structure

PHENIX PRL 98 232302 (2007)

shoulder structure

PHENIX PRL 98 232302 (2007)

Pb-Au 17.3 GeV 0-5%

CERES Preliminary

Takahashi et al, PRL 103 242301 (2009)

Li et al, PRC 80 064913 (2009)

Workshop on RHIC Paradigms

Anne M. Sickles

April 16, 2010

CERES Preliminary

Takahashi et al, PRL 103 242301 (2009)

Li et al, PRC 80 064913 (2009)

CERES Preliminary

Takahashi et al, PRL 103 242301 (2009)

Li et al, PRC 80 064913 (2009)

CERES Preliminary

Takahashi et al, PRL 103 242301 (2009)

Li et al, PRC 80 064913 (2009)

Anne M. Sickles

PHENIX arXiv:1002.1077

Workshop on RHIC Paradigms

Anne M. Sickles

PHENIX arXiv:1002.1077

Anne M. Sickles

PHENIX arXiv:1002.1077

Workshop on RHIC Paradigms

Anne M. Sickles

April 16, 2010

• no (visible) shoulder for high p_T dijets

PHENIX arXiv:1002.1077

- no (visible) shoulder for high pT dijets
 - if the shoulder is really related to the jet the shoulder should grow with it

PHENIX arXiv:1002.1077

 if the shoulder is really related to the jet the shoulder should grow with it

PHENIX arXiv:1002.1077 • ... unless we're just looking at jets that don't interact

Ridge & Shoulder are similar...to the bulk

• ridge slightly harder than inclusive, but softer than jet part

STAR, PRC 80 064912 (2009), C.H. Chen QM09

PHENIX PRL 101 082301 (2008)

C. Suarez, QM08

PHENIX PRL 101 082301 (2008)

C. Suarez, QM08

PHENIX PRL 101 082301 (2008)

PHENIX PRL 101 082301 (2008)

PHENIX PRL 101 082301 (2008)

M. Connors QM09

Workshop on RHIC Paradigms

• provide constraints on the ridge mechanism

- provide constraints on the ridge mechanism
 - radial flow \rightarrow no gamma-h ridge

the ridge: a distraction?

- is studying the ridge like studying the underlying event in p+p?
 - important, but mostly so you know how to get rid of it?
 - useful for studying initial state?
- seems too wide to be energy lost by jet or coupling between jet and flow

• all partons are not equal

- all partons are not equal
- interaction dependence on parton type is a good control

- all partons are not equal
- interaction dependence on parton type is a good control
 - color charge \rightarrow interaction strength

QGP partoni(E)

- all partons are not equal
- interaction dependence on parton type is a good control
 - color charge \rightarrow interaction strength
 - parton speed \rightarrow do we see Mach cones?

cypes of partons QGP partoni(E)

- all partons are not equal
- interaction dependence on parton type is a good control
 - color charge \rightarrow interaction strength
 - parton speed \rightarrow do we see Mach cones?
 - parton mass \rightarrow collisional vs radiative energy loss?

• protons a good way to probe gluon jets?

- protons a good way to probe gluon jets?
 - substantial uncertainties remain

- protons a good way to probe gluon jets?
 - substantial uncertainties remain

light quarks vs gluons

- protons a good way to probe gluon jets?
 - substantial uncertainties remain

light quarks vs gluons

- protons a good way to probe gluon jets?
 - substantial uncertainties remain

light quarks vs gluons

- protons a good way to probe gluon jets?
 - substantial uncertainties remain

this needs to be understood

- this needs to be understood
 - high pT flow?

- this needs to be understood
 - high pt flow?
- direct production, flavor conversions, etc

q g q

• much firmer ground!

- much firmer ground!
- no evidence π^0 -h vs γ -h differences

4

p_thm [GeV/c]

6 0

2

p^h_T [GeV/c]

6

6)

2

p^h_T [GeV/c]

n

2

- much firmer ground!
- no evidence π^0 -h vs γ -h differences
 - more data just taken

4

p_thm [GeV/c]

6 0

2

p^h_T [GeV/c]

6

6)

p^h_T [GeV/c]

2

- much firmer ground!
- no evidence π^0 -h vs γ -h differences
 - more data just taken
- also other factors play a role

- no evidence π^0 -h vs γ -h differences
 - more data just taken
- also other factors play a role
 - surface bias, $\pi^0(p_T) < parton p_T$

• $M_K < M_{\varphi} R_{AA}(K) \sim R_{AA}(\varphi)$

• not the strict baryon/meson separation seen in v_2

• $M_K < M_{\varphi} R_{AA}(K) \sim R_{AA}(\varphi)$

- not the strict baryon/meson separation seen in v_2
- no significant effects of hidden strangeness in η

Workshop on RHIC Paradigms

Anne M. Sickles

April 16, 2010

- collectivity and suppression
- clearly not energy loss followed by vacuum fragmentation!

charm vs. bottom

- suppression large even as electrons become dominated by bottom at high pT
- possibility of novel suppression mechanisms
 - e.g. Adil & Vitev in medium formation/ dissocication

PHENIX PRL 103 082002 (2009)

PRC 78 014901 (2008)

• near side: IAA~I

PRC 78 014901 (2008)

near side: IAA~I

• consistent with electrons from Ds

- near side: IAA~I
 - consistent with electrons from Ds
 - sanity check

PRC 78 014901 (2008)

- near side: IAA~I
 - consistent with electrons from Ds
 - sanity check
- away side:

PRC 78 014901 (2008)

- near side: IAA~I
 - consistent with electrons from Ds
 - sanity check
- away side:
 - very similar to light hadron IAA

PRC 78 014901 (2008)

- near side: IAA~I
 - consistent with electrons from Ds
 - sanity check
- away side:
 - very similar to light hadron IAA

PRC 78 014901 (2008)

more questions than answers

more questions than answers

• separation of charm & bottom
- separation of charm & bottom
 - possible with vertex detectors

- separation of charm & bottom
 - possible with vertex detectors
- Λ_C needed to understand if recombination is present

- separation of charm & bottom
 - possible with vertex detectors
- Λ_C needed to understand if recombination is present
 - three particle decay!

- separation of charm & bottom
 - possible with vertex detectors
- Λ_C needed to understand if recombination is present
 - three particle decay!
 - very difficult (impossible?) in central AuAu with current detectors

- separation of charm & bottom
 - possible with vertex detectors
- Λ_C needed to understand if recombination is present
 - three particle decay!
 - very difficult (impossible?) in central AuAu with current detectors
- electron is a poor estimate of D/B momentum

- separation of charm & bottom
 - possible with vertex detectors
- Λ_C needed to understand if recombination is present
 - three particle decay!
 - very difficult (impossible?) in central AuAu with current detectors
- electron is a poor estimate of D/B momentum
 - reconstuction of mesons via hadronic decays will help

two-source model

combinatoric background = $b_0(1+2v_{2A}v_{2B}cos(2\Delta \phi))$

- it's never been shown to be wrong
 - that doesn't mean it's right
- in principle $\langle v_{2A}v_{2B} \rangle \neq \langle v_{2A} \rangle \langle v_{2B} \rangle$
- B can be calculated in HI collisions (no fudge factors) from the data (Sickles, McCumber, Adare PRC 81 014908 (2010))
 - depends on the widths of the centrality bins
 - generally very close to ZYAM, however some significant advantages
 - wide jets
 - poor statistics

b_0 determination

b_0 determination

in general $b_0 \sim \langle n_{trig} \rangle \langle n_{assoc} \rangle$ additional centrality dependent factor, ξ

N_{part} or N_{coll}

in general $b_0 \sim < n_{trig} > < n_{assoc} >$ additional centrality dependent factor, ξ • more central events contain more pairs

N_{part} or N

coll

in general $b_0 \sim < n_{trig} > < n_{assoc} >$ additional centrality dependent factor, ξ • more central events contain more pairs not new, used in

N_{part} or N

coll

in general b₀~<n_{trig}><n_{assoc}>
additional centrality dependent factor, ξ
more central events contain more pairs not new, used in
PHENIX, PRC 71 051902

N_{part} or N

coll

- in general $b_0 \sim < n_{trig} > < n_{assoc} >$
- additional centrality dependent factor, ξ
 - more central events contain more pairs
- not new, used in
 - PHENIX, PRC 71 051902
 - PHENIX PRL 98 232302

- in general $b_0 \sim < n_{trig} > < n_{assoc} >$
- additional centrality dependent factor, ξ
 - more central events contain more pairs
- not new, used in
 - PHENIX, PRC 71 051902
 - PHENIX PRL 98 232302
 - PLB 649 359 (2007)

- in general $b_0 \sim < n_{trig} > < n_{assoc} >$
- additional centrality dependent factor, ξ
 - more central events contain more pairs
- not new, used in
 - PHENIX, PRC 71 051902
 - PHENIX PRL 98 232302
 - PLB 649 359 (2007)
 - PHENIX PRC 80 024908

- in general $b_0 \sim < n_{trig} > < n_{assoc} >$
- additional centrality dependent factor, ξ
 - more central events contain more pairs
- not new, used in
 - PHENIX, PRC 71 051902
 - PHENIX PRL 98 232302
 - PLB 649 359 (2007)
 - PHENIX PRC 80 024908
 - PHENIX arXiv:1002.1077

- if jet energy is the parton energy then jet reconstruction followed by fragmentation function measurements provide exactly what's needed
- caveats:
 - energy transfer between parton and matter: e.g. collisional energy loss
 - missing energy--no hadronic calorimeters at RHIC
 - soft background will limit jet reconstruction in a very interesting pT range
 - we still have to understand the initial conditions!

• wealth of data on identified particles at moderately high p_T

- wealth of data on identified particles at moderately high p_T
- physical picture isn't simple

- wealth of data on identified particles at moderately high p_T
- physical picture isn't simple
 - that's good, it shouldn't be

- wealth of data on identified particles at moderately high p_T
- physical picture isn't simple
 - that's good, it shouldn't be
- ridges and shoulders

- wealth of data on identified particles at moderately high p_T
- physical picture isn't simple
 - that's good, it shouldn't be
- ridges and shoulders
 - beware: exist even in non-jet models, SPS energies

- wealth of data on identified particles at moderately high p_T
- physical picture isn't simple
 - that's good, it shouldn't be
- ridges and shoulders
 - beware: exist even in non-jet models, SPS energies
 - more quantitative calculations

- wealth of data on identified particles at moderately high p_T
- physical picture isn't simple
 - that's good, it shouldn't be
- ridges and shoulders
 - beware: exist even in non-jet models, SPS energies
 - more quantitative calculations
- changing the parton

- wealth of data on identified particles at moderately high p_T
- physical picture isn't simple
 - that's good, it shouldn't be
- ridges and shoulders
 - beware: exist even in non-jet models, SPS energies
 - more quantitative calculations
- changing the parton
- open questions: what is the role of formation time, geometry, other effects in interpreting results?

idea: jet parton scatters on medium parton and changes flavor

$$q + \overline{q} \Leftrightarrow g + g$$
$$q + g \Leftrightarrow g + q$$

Ko et al. PRC 75 051901 (2007) Liu & Fries PRC77 054902 (2008)

Anne M. Sickles

idea: jet parton scatters on medium parton and changes flavor

$$q + \overline{q} \Leftrightarrow g + g$$
$$q + g \Leftrightarrow g + q$$

parton RAA

Ko et al. PRC 75 051901 (2007) Liu & Fries PRC77 054902 (2008)

Anne M. Sickles

$$q + \overline{q} \Leftrightarrow g + g$$
$$q + g \Leftrightarrow g + q$$

Ko et al. PRC 75 051901 (2007) Liu & Fries PRC77 054902 (2008)

Workshop on RHIC Paradigms

Anne M. Sickles

April 16, 2010

$$q + \overline{q} \Leftrightarrow g + g$$
$$q + g \Leftrightarrow g + q$$

Ko et al. PRC 75 051901 (2007) Liu & Fries PRC77 054902 (2008)

Workshop on RHIC Paradigms

Anne M. Sickles

April 16, 2010

$$q + \overline{q} \Leftrightarrow g + g$$
$$q + g \Leftrightarrow g + q$$

Ko et al. PRC 75 051901 (2007) Liu & Fries PRC77 054902 (2008)

Anne M. Sickles

Ko et al. PRC 75 051901 (2007) Liu & Fries PRC77 054902 (2008)

Anne M. Sickles

April 16, 2010

• could increase $R_{AA}(protons)/R_{AA}(\pi)$, but not beyond I

- could increase $R_{AA}(protons)/R_{AA}(\pi)$, but not beyond 1
 - recombination at high pT?
jet conversions

- could increase $R_{AA}(protons)/R_{AA}(\pi)$, but not beyond 1
 - recombination at high pT?
- potentially extremely interesting: sensitive to mean free path

Ko et al. PRC 75 051901 (2007) Liu & Fries PRC77 054902 (2008)

jet conversions

- could increase $R_{AA}(protons)/R_{AA}(\pi)$, but not beyond 1
 - recombination at high pT?
- potentially extremely interesting: sensitive to mean free path
 - however need to understand FF

Ko et al. PRC 75 051901 (2007) Liu & Fries PRC77 054902 (2008)

Brodsky & AMS PLB 668 111 (2008)

Workshop on RHIC Paradigms

Anne M. Sickles

• color singlet proton directly produced within hard scattering

Brodsky & AMS PLB 668 III (2008)

- color singlet proton directly produced within hard scattering
- size of proton decreases with increasing pT: color transparent

Brodsky & AMS PLB 668 111 (2008)

- color singlet proton directly produced within hard scattering
- size of proton decreases with increasing pT: color transparent
 - proton exits collision region without interacting, like a direct γ

Brodsky & AMS PLB 668 111 (2008)

- color singlet proton directly produced within hard scattering
- size of proton decreases with increasing pT: color transparent
 - proton exits collision region without interacting, like a direct γ
 - $R_{AA}(proton) > R_{AA}(\pi)$

Brodsky & AMS PLB 668 111 (2008)

CGC + radial flow ridge

$$\frac{dN}{dz_T} = Ne^{-bz_T}$$

- p+p: b= 6.89 ± 0.64
 - consistent with quark fragmentation (b=8)
- Au+Au: b = 9.49 ± 1.37

