

Status and Test Beam Results for the sPHENIX

Calorimeter System

Anne M. Sickles for the sPHENIX Collaboration November 1, 2016

what is sPHENIX

jet and hard probes optimized detector at RHIC for gold-gold collisions

- high rate
- large uniform acceptance for jets, photons and upsilons
- excellent tracking and full hadronic and electromagnetic calorimetry
- first data: 2022
- 200 collaborators / 60 institutions

physics

physics driven requirements

EMCal

- electron ID:
- ε > 70%
- hadron rejection: > 90:1 in AuAu @ p_T = 4 GeV

photons:

- < 15 % / √E
- $\Delta \eta \times \Delta \phi = 0.024 \times 0.024$
- trigger rejection in pp & pA > 100 for Ey > 10 ${\tt c}^{{\tt f}}_{\tt GeV}$

EMCal + HCal

- jets:
 - JER < 120% / √E (pp/pA)
 - JER < 150% / √E (AA)
 - jet trigger in pp / pA

sPHENIX: calorimeters

cross section of the calorimeter

EMCal

- tungsten powder SciFi SPACAL
- $\phi \times \eta = 2\pi \times 1.1$; $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$
 - \rightarrow 24576 channels

HCal

- steel / scintillating tile w/ WLS readout
 - plates parallel to beam
 - tilted to avoid channeling
- Inner HCal: inside magnet
- Outer HCal: outside magnet
 - doubles as flux return
- $\phi \times \eta = 2\pi \times 1.1$; $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$

→ 3072

hadronic calorimeter

EMCal structure

EMCal module construction

- absorber: tungsten powder
- fiber: Kuraray SCSF78
 0.47mm
- $X_0 = 0.7$ mm, $R_M = 2$ cm
- ρ ~ 10g/cm³

fiber assembly before filling

SEM of tungsten powder

diamond fly cut end

1D projective EMCal prototype

1 brick = 2 towers

prototype = 64 towers

industry made

University of Illinois made

THP	THP						
10.2	10.5	8.5	8.5	9.0	9.0	9.8	9.8
THP	THP						
9.7	9.7	10.0	10.0	10.0	10.0	9.0	9.9
111P	111°	111P	111°	111°	1112	1111°	110°
9.2	9.2	9.8	9.8	2.3	9.3	10.1	10.1
0100	UIUC	UUC	UIUC	THP	THP	THP	THP
9.6	9.6	9.4	9.4	10.1	10.1	9.6	9.6
UIUC	0000	UUC	uuc	THP	ТПР	יווד	ТПР
9.5	9.5	9.5	95	9 T	9 1	1 פ	91
0100	010C	0100	010C	0100	010C	0100	010C
9.1	9.4	9.4	9.4	9.1	9.4	9.5	9.6
UIUC	UIUC	UIUC	0000	UUC	000C	000	000C
9.2	9.2	9.5	9.6	93	9 1	93	93
UIUC	UUC	UIUC	UIUC	UUC	9.3	UIUC	UUC
9.5	9.5	9.6	9.6	9.3	9.3	9.2	9.2

HCal prototype

Inner and Outer HCAL prototypes each 4 x 4 towers

- Inner: =56 x 94 cm²
- Outer: = 74 x 165 cm²

Outer HCAL prototype with assembled steel plates and readout electronics

Polystyrene scintillating tiles (7 mm) with WLS fiber (1 mm). One SiPM reads out both ends of fiber. SiPMs from 5 tiles summed into 1 tower

testbeam setup at Fermilab

Geant 4 based simulations

hadron

good agreement between data & simulation

EMCal Calibrations

hadron

rotated EMCal position for calibrations

calibrate w/ 120 GeV proton beam MIP

beam

HCal Calibrations

HCAL calibration done with cosmic μ 's E_{dep} ~ 750 MeV (inner) E_{dep} ~ 1 GeV (outer)

self triggering w/x16 higher gain

EMCal energy resolution & linearity

center of tower (selected via hodoscope)

- similar performance between industry at Illinois built blocks
 - resolution better than our requirements
- larger tilt angles → shallower showers
- deviations from linearity in part due to beam energy shifts from nominal values

position dependence of energy scale

• sources:

- lightguide inefficiency near edges
- gaps in fibers between towers?

position dependence of energy scale

use 2D position correction based on the hodoscope

Before Position Correction

After Position Correction

EMCal energy resolution & linearity

after application of position correction

correction for Illinois blocks

combining EMCal & HCal energy

combined resolution

- combined resolution: 13.4% \oplus 65.9 / \sqrt{E}
 - significantly better than our requirement

HCal showers alone

- hadron resolution: 12.9% ⊕ 78.8 / √E
- some deviations from linearity / saturation at high beam energy

plans for further prototyping

- demonstrate high | η | performance
 - new tiles in HCal corresponding to $|\eta| \sim 0.7$
 - improved gain setting
 - 2D projective EMCal modules
 - also 4 towers / brick
 - redesigned lightguides

Fermilab testbeam: January 2017

summary & outlook

- sPHENIX is the planned new detector at RHIC in order to study the QGP with jets, photons, upsilons and heavy flavor
- design and testing of the calorimeters is well underway
- improvements identified, but test beam performance shows that the calorimeters meet the physics requirements
- paper on these results is nearing completion and will be submitted soon!
- next testbeam of high |η| modules planned for January 2017

extras

1D vs 2D projectivity

- projectivity in η improves large $|\eta|$ hadron rejection
- 1/17 testbeam: deomonstrate high |n| performance

e/h: calorimeter system

