Hot Nuclear Matter at RHIC

Anne Sickles Brookhaven National Laboratory March 24, 2008

The Nucleus

The Strong Force

- holds the nucleus together
- gluons are the force carriers
- quarks and gluons carry "color" charge
- α_s large at low energies decreases at large energies/small distances: asymptotic freedom

Confinement

- QCD force increases with distance
- energy required to separate quarks is greater than the energy required to create quark/anti-quark pair
- all normal matter is color neutral

Moving Away from Normal Nuclei

nuclear physics: interactions of partons

Electron Scattering

parton: quark, anti-quark or gluon

	Charge	Mass (GeV)
down	-1/3	0.006
up	+2/3	0.003
strange	-1/3	0.1
charm	+2/3	1.2
bottom	-1/3	4
top	+2/3	171

heavy ion collisions

- goal: hot partonic matter
- method: take large nuclei and collide them as fast as possible
 - details of the nuclear structure as mostly unimportant
- past: AGS at Brookhaven and SPS at CERN
- future: LHC at CERN
- present: RHIC at Brookhaven

Timeline of a Collision

- radius of Au nuclei: 7 fm = 7x10⁻¹⁵m
- time to traverse the nucleus: $7x10-15m/(3x10^8m/s)=20x10^{-23}s$
- 8 illustration: S. Bass

Need a Calibrated Probe

Relativistic Heavy Ion Collider

- 4km circumference
- up to 200GeV center of mass energy
- flexible: wide range of nuclei, asymmetric collisions

PHENIX & STAR

large acceptance TPC for charged particle tracking and identification

detectors complementary

rare probes high event rates excellent calorimeter

Counting Particles

A Collision

Thermal Radiation

- excess photons observed in Au+Au collisions
 - possibly thermal radiation
- estimates of initial system temperature range from ~300-600MeV (see: J.
 Frantz J. Phys G34 S389 (2007))

Jets in p+p Collisions

Parton Distribution

Functions: Measured in Deep Inelastic Scattering

Hard Scattering Cross

Section: Calculated with pQCD

Fragmentation into

Hadrons: Measured in e+e- Collisions

A Jet in STAR

Heavy Ion Collisions

Testing Expectations

• QCD processes can produce photons:

- Photons escape the colored final state without interacting
- If the initial state in heavy ion collisions is like a collection of p+p collisions, photon spectra should scale from p+p

Control Experiment

What about Quarks & Gluons?

what happens with protons?

- proton R_{AA}~1 for 2<pt<5GeV/c
- similar to photon RAA
 - but photons don't interact via the strong force

Is it possible protons aren't interacting with the matter?

Hadron Production in QCD

- 2→2 quark or gluon scattering followed by fragmentation
 - understood as creating quark/anti-quark pairs which combine forming hadrons
 - works well for mesons (e.g. pions)
- however proton production is suppressed
 - 3 quarks are needed
 - however, this suppression could increase sensitivity to novel QCD processes...

- color singlet proton directly produced within hard subprocess
- higher twist effect, but could be dominant within p_T range of interest
- size of proton decreases with increasing p_T : color transparent
 - proton exits collision region without interacting

where do protons come from?

direct processes & strange baryons

- can also make strange baryons: signature balancing strangeness will be on in recoil jet
- in contrast, in hard fragmentation picture: balancing strangeness will be close, in same jet

Back to the Matter @ Hand

what about those pions that lost so much energy?

2 particle correlations

- "trigger" on high p_T
 particles to find a hard
 scattering
- count lower p_T particles to study medium interactions
- comparison of Au+Au and p+p allows measurements of matter's effect on jet properties

- because of the large energy loss the trigger is biased toward small matter path lengths
- then the away side biased toward long path lengths in the matter
 - maximal interactions with the matter

Away Side

PHENIX, PRL 98 232302, 2007

Away Side

Anne Sickles, March 24, 2008

how does the matter behave?

Weak Interactions particles emitted isotropically small v₂

Strong Interactions particles emitted in reaction plane large v₂

How Does the Matter Behave?

A Most Perfect Fluid?

- conjectured lower bound to viscosity/entropy density (Kovtun, et al. PRL 94 111601 (2005))
 - initial estimates from RHIC data put ratio @ a few times the conjectured lower bound

An Exotic Connection?

- calculation done on 10 dimensional black holes
 - based on the insight from string theory of the duality between 4 dimensional strongly coupled gauge theories and higher dimensional gravity theories (Maldacena Adv. Theor. Math. Phys. 2, 231, 1998)

The Matter @ RHIC

- behaves as matter:
 - hydrodynamcially with very small viscosity
 - propagation of Mach Cones
- opaque:
 - energy loss in colored matter
- hot
 - estimated initial temperature 300-600MeV
- matter provides a unique way to study QCD itself
 - color transparent proton production

What's Ahead?

- Quantitative, Differential Measurements of the produced matter
 - heavy quarks are/will providing new constraints on matter properties & hadron production
 - vary the initial conditions: change collision energy & system size
- Explore whether we can use the matter to understand more about QCD, string theory, strong coupled systems, ...