d+Au Hadron Correlation Measurements at PHENIX

PH ENIX PH ENIX Anne Sickles for the PHENIX Collaboration BNL

A. M. Sickles

initial or final state effect?

CGC/Glasma

hydrodynamics

watching from RHIC...

4

RHIC & LHC

5.02TeV pPb

200GeV dAu

25x difference in collision energy d-A vs p-A large data sample already on tape

A. M. Sickles

6

minimizing jet effect in PHENIX

- normal two particle correlations: look at as high p_T particles as possible
 - minimizes combinatoric background, maximizes jet correlations
- near side jets are a small $|\Delta \eta|$ correlation

- keep one particle at very low $p_{\rm T}$
 - maximize sensitivity to underlying event
- select as large $|\Delta \eta|$ as possible ($|\eta| < 0.35$)
 - $0.48 < |\Delta \eta| < 0.7$

centrality dependence

8

centrality dependence

9

centrality dependence consistently described by cos2Δφ shape

but is this just an artifact of the small $|\Delta \eta|$ acceptance?

- vary the minimum $|\Delta \eta|$ cut from 0.36 to 0.60
- look at the charge sign dependence:
 - jet correlations are enhanced for opposite sign pairs and suppressed for same sign pairs
- further studying with event generators
- look for long range correlations

- vary the minimum $|\Delta \eta|$ cut from 0.36 to 0.60
 - look at the charge sign dependence:
 - jet correlations are enhanced for opposite sign pairs and suppressed for same sign pairs
 - further studying with event generators
 - look for long range correlations

issue: short range effects from centrality dependent jet modifications could modify near side correlations within small $|\Delta \eta|$

- vary the minimum $|\Delta \eta|$ cut from 0.36 to 0.60
 - look at the charge sign dependence:
 - jet correlations are enhanced for opposite sign pairs and suppressed for same sign pairs
 - further studying with event generators
 - look for long range correlations

A. M. Sickles

- vary the minimum $|\Delta \eta|$ cut from 0.36 to 0.60
 - look at the charge sign dependence:
 - jet correlations are enhanced for opposite sign pairs and suppressed for same sign pairs
 - further studying with event generators
 - look for long range correlations

- vary the minimum $|\Delta \eta|$ cut from 0.36 to 0.60
 - look at the charge sign dependence:
 - jet correlations are enhanced for opposite sign pairs and suppressed for same sign pairs
- in further studying with event generators
 - look for long range correlations

issue: short range effects from centrality dependent jet modifications could modify near side correlations within small $|\Delta \eta|$

- vary the minimum $|\Delta \eta|$ cut from 0.36 to 0.60
 - look at the charge sign dependence:
 - jet correlations are enhanced for opposite sign pairs and suppressed for same sign pairs
- in further studying with event generators
- **New!** look for long range correlations

A. M. Sickles

rapidity separated correlations

Muon Piston Calorimeters

both d-going & Augoing directions $3 < |\eta| < 4$

Side View

rapidity separated correlations

extending forward/backward correlations

NEW! Shengli Huang

- very low E_T in MPC by using energy flow rather than reconstructed particles
- sensitivity to bulk particles in calorimeter measurement
- correlate with central arm: lon range: $3 < |\Delta \eta| < 4$
- separate d-going and Au-going phenomena

extending forward/backward correlations

NEW! Shengli Huang

- very low E_T in MPC by using energy flow rather than reconstructed particles
- sensitivity to bulk particles in calorimeter measurement
- correlate with central arm: lon range: $3 < |\Delta \eta| < 4$
- separate d-going and Au-going phenomena

mid/d-going correlations

NEW!

mid/Au-going correlations

NEW!

NEW! mid/Au-going correlations

getting quantitative...

c2(p_{T,a},p_{T,b}) = v2(p_{T,a})v2(p_{T,b})
 →factorization assumption: two particle modulation is the product of the single particle anisotropies, no inconsistencies with this assumption found

comparison with LHC results

19

pPb vs dAu

d+A central collisions have much larger ε_2 than p+A

comparison to hydro calculations

good qualitative agreement with hydro calculations

n.b. Bzdak et al calculations at fixed N_{part}

v₃ at RHIC?

no evidence for significant v₃

PHENIX: 1303.1794

what v₃ might be expected?

23

depends on system and model of initial state

v2/v3 much larger in dAu than in pPb

what about the CGC?

significant signal expected at RHIC!

Dusling & Venugopalan 1211.3701, 1302.7018 & private comm.

what about the CGC?

significant signal expected at RHIC!

- smaller yield expected at RHIC compared to LHC
- Fourier coefficients aren't calculated for this model--working to compare to our data

v_2/ϵ_2 vs multiplicity

• \rightarrow approximate scaling of v_2/ϵ_2 with dN/d η

a common relationship between geometry and v₂?

hydro or CGC?

He3 + Au

increase the triangularity of the initial state! what happens to v₃?

hydro or CGC?

He3 + Au

increase the triangularity of the initial state! what happens to v₃?

PHENIX requesting short d+Au & He³+Au with increased acceptance relative to previous d+Au running (VTX/FVTX) to constrain geometry along with long p+Au running in 2015

35

<N_{coll}>

spectra in dAu

spectra should also be addressed by hydro calculations

PHENIX:1304.3410

conclusions

- ridge-like behavior seen at PHENIX at short and long range (Δη
 > 3) with large v₂ at midrapidity
- we look forward to extending these measurements:
 - yields, $v_N(\eta)$, different collision systems (<u>pA</u>, <u>dA</u>, <u>He³A</u>, <u>peripheral heavy ions, asymmetric collisions</u>...)
 - ... in order to understand what's going on in very small systems

backups

- PHENIX dAu centrality determination by charge in Au-going BBC, which is in the same rapidity window as MPC: 3<q<4
- here determine the event centrality by number of PC1 hits (mid-rapidity)
 - some differences, but qualitative features remain unchanged

what is the eccentricity?

models can give very different eccentricities!

MC-Glauber 1 (smeared 0.4 fm)

MC-Glauber 2 (smeared 0.4 fm)

-

--

IP-Glasma

A. M. ScBes

MC-Glauber 1

MC-Glauber 2

Bzdak et al: 1304.3403

33

R

mid/d-going correlations

Centrality Selection

BBC Charge distribution well described by Glauber MC + negative binomial distribution

Au