Probing Hot Nuclear Matter via Moderate pT Jets @ RHIC

Anne M. Sickles Brookhaven Extracting Order (and Physics) from Low to Medium Energy Jets

> Anne M. Sickles Brookhaven

More Specifically...

- baryon production (mostly my work)
- ridges & shoulders (gives the context to understand baryons)
- why moderate p_T phenomena still hold a lot of new information
- experimental issues that become important as the measurements become more precise

Jets in p+p Collisions

Parton Distribution

Functions: Measured in Deep Inelastic Scattering

Hard Scattering Cross

Section: Calculated with pQCD

Fragmentation into

Hadrons: Measured in e+e- Collisions

Heavy Ion Collisions

Parton Distribution

Functions: Measured in Deep Inelastic Scattering

Hard Scattering Cross

Section: Calculated with pQCD

Interactions Between

the Hard Scattered

Parton and the

Produced Matter

Heavy Ion Collisions

pQCD @ low pT

STAR PLB 637 (2006) 161

Au+Au: high p_T

Au+Au: high pT

final state energy loss, geometrical bias sensitive to opacity, (relatively) unmodified jets

Au+Au: high pT

final state energy loss, geometrical bias sensitive to opacity, (relatively) unmodified jets

where's the lost energy? what does that tell us about the matter?

PHENIX, PRC 74 024904 (2006), J. Chen Hard Probes 2008, STAR Preliminary

PHENIX, PRC 74 024904 (2006), J. Chen Hard Probes 2008, STAR Preliminary

PHENIX, PRC 74 024904 (2006), J. Chen Hard Probes 2008, STAR Preliminary

baryon excess

Modification to fragmentation particle ratios extends to p_T ~ 5 GeV PHENIX PRC 74 024904 (2006)

baryon excess

Modification to fragmentation particle ratios extends to p_T ~ 5 GeV PHENIX PRC 74 024904 (2006) Quark Number Scaling of v2 extends to p_T ~ 4-6 GeV

PHENIX PRL 98 162301 (2007)

recombination models

- quarks close together in phase space come together to form final state hadrons
- resulting hadron at higher p_T than parent partons, in contrast to fragmentation
- dominates for exponential parton p_T spectra
- doesn't necessarily have anything to do with jets

Fries et al., Hwa et al., Ko et al.

2 particle correlations

- "trigger" on high p_T particles to find a hard scattering
- count lower p_T particles to study medium interactions
- comparison of Au+Au and p+p allows measurements of matter's effect on jet properties

 are baryons associated with jet-like structures?

 are baryons associated with jet-like structures?

• yes

 are baryons associated with jet-like structures?

• yes

 however, the jets look different

 are baryons associated with jet-like structures?

• yes

- however, the jets look different
- additionally, normal (meson) jets also look different

12

 are baryons associated with jet-like structures?

yes

- however, the jets look different
- additionally, normal (meson) jets also look different

 are baryons associated with jet-like structures?

yes

- however, the jets look different
- additionally, normal (meson) jets also look different

interactions between hard parton, matter and hadron formation

12

Hadron Production

Parton Distribution Functions: Measured in Deep Inelastic

Scattering

Hard Scattering Cross

Section: Calculated with pQCD

Interactions Between

the Hard Scattered

Parton and the

Produced Matter

Hadron Production

Parton Distribution

Functions: Measured in Deep Inelastic Scattering

Hard Scattering Cross

Section: Calculated with pQCD

Interactions Between the Hard Scattered Parton and the Produced Matter and Hadron Production

Hadron Production

Parton Distribution Functions: Measured in

Deep Inelastic Scattering

Hard Scattering Cross

Section: Calculated with pQCD

Interactions Between the Hard Scattered Parton and the Produced Matter and Hadron Production

рт,trig >2.5GeV/с рт,assoc>20MeV/с

E. Wenger QM2008

рт,trig >2.5GeV/с рт,assoc>20MeV/с

- E. Wenger QM2008
 - correlated with a jet

рт,trig >2.5GeV/с рт,assoc>20MeV/с

E. Wenger QM2008

- correlated with a jet
- huge: ridge extends to $|\Delta \eta| > 4$

р_{т,trig} >2.5GeV/с р_{т,assoc}>20MeV/с

E. Wenger QM2008

- correlated with a jet
- huge: ridge extends to $|\Delta \eta| > 4$
- related to baryon/meson differences in the yields?

baryons in the ridge

C. Suarez, QM08

baryons in the ridge

C. Suarez, QM08

baryons in the ridge

C. Suarez, QM08
baryons in the ridge

excess baryons in the ridge, jet particle ratios ~unmodified C. Suarez, QM08

J. Chen Hard Probes 2008, PHENIX PLB 649 (2007) 359 Anne

J. Chen Hard Probes 2008, PHENIX PLB 649 (2007) 359 Ann

baryon trigger = ridge trigger

J. Chen Hard Probes 2008, PHENIX PLB 649 (2007) 359 An

- baryon trigger = ridge trigger
 - most of the time PHENIX misses the jet ($\sigma_{ridge} \gg \sigma_{PHENIX}$)

J. Chen Hard Probes 2008, PHENIX PLB 649 (2007) 359

• quantitative comparisons require the same particles in the same p_T /centrality bins

- quantitative comparisons require the same particles in the same p_T/centrality bins
- identified particles!

η	0.5 Δη <0.7	η <0.35	? (wider than PHENI)
		• • •	

- quantitative comparisons require the same particles in the same p_T /centrality bins
- identified particles!

we might be missing something interesting!

most central collisions

- big drop off in the number of mesons associated with a small angle baryon
- is this something else?
 baryons without a ridge or a jet?

PHENIX, PLB 649 359 (2007)

other baryon anomalies

- even @ high p_T, baryon/ meson differences persist!
- however, baryons should if anything be more suppressed because of the larger gluon color factor

other baryon anomalies

- even @ high p_T, baryon/ meson differences persist!
- however, baryons should if anything be more suppressed because of the larger gluon color factor

are baryons coming from somewhere else?

spectra shapes: p+p

 $x_T = 2p_T/s^{1/2}$

spectra shapes: p+p

spectra shapes: p+p

spectra shapes: Au+Au

PHENIX PRC69 034910 (2004)

πº: same scaling as in p+p hadrons: significant deviations from scaling

more quantitatively

- baryons raise the effective power at fixed x_T
- why?

PHENIX PRC69 034910 (2004)

Hadron Production in QCD 2→2 quark or gluon scattering followed by fragmentation

- understood as creating quark/anti-quark pairs which form hadrons
- works well for mesons
- however baryoon production is suppressed
 - 3 quarks are needed
 - however, this suppression could increase sensitivity to novel QCD processes...

direct proton production

• color singlet proton directly produced within hard subprocess

- color singlet proton directly produced within hard subprocess
- higher twist effect, but could be dominant within p_T range of interest

- color singlet proton directly produced within hard subprocess
- higher twist effect, but could be dominant within p_T range of interest
- size of proton decreases with increasing p_T : color transparent
 - proton exits collision region without interacting, like a direct $\boldsymbol{\gamma}$

how would you test this?

Brodsky, AS PLB 668 111 (2008)

how would you test this?

how would you test this? $uu \rightarrow \Sigma^+s$ S Brodsky, AS PLB 668 111 (2008)

 can also make strange baryons: signature balancing strangeness will be on in recoil jet

- can also make strange baryons: signature balancing strangeness will be on in recoil jet
- in contrast, in hard fragmentation picture: balancing strangeness will be close, in same jet

Shoulder

1<p_tassoc} <2.5<p_trigg <4GeV/c 1<p_tassoc} <2.5<p_trigg <4GeV/c 0.3 0.03 Au+Au 200 GeV 5-10% Au+Au 200 GeV 60-90% (∲⊽) Г 0.2 0.0 0.1 persists to low energies/ 0.03 Au+Au 62.4 GeV 40-80% Au+Au 62.4 GeV 0-10% 0. small systems 0.02 (¢∇) ∩ 0.05 peak position nearly constant Cu+Cu 200 GeV 0-10% Cu+Cu 200 GeV 40-80% 0.06 0.3 (∲⊽) Γ 0.02 0.2 0. 0.3 0.06 Cu+Cu 62.4 GeV 0-10% Cu+Cu 62.4 GeV 40-80% 0.2 (∲∇) Γ 0.02 0.1 is this one modified 0.5 2.5 0 0.5 1.5 $\Delta \phi$ (rad) $\Delta \phi$ (rad) structure or two distinct peaks?

2.5

PRL 98 232202 (2007)

Shoulder

1<p_T^assoc}<2.5<p_T^trig 1<p_tassoc} <2.5<p_trigg <4GeV/c 0.3 0.03 Au+Au 200 GeV 5-10% Au+Au 200 GeV 60-90% (∲⊽) Г 0.2 0.0 0.1 persists to low energies/ 0.03 Au+Au 62.4 GeV 0-10% Au+Au 62.4 GeV 40-80% 0.1 small systems 0.02 (¢∇) ∩ 0.05 peak position nearly constant Cu+Cu 200 GeV 0-10% Cu+Cu 200 GeV 40-80% 0.3 0.06 ÷. (∲⊽) Γ 0.02 0.2 0. 0.3 0.06 Cu+Cu 62.4 GeV 0-10% Cu+Cu 62.4 GeV 40-80% ¢¢ 0.2 (¢∇) Γ €∰ŢŢ 0.1 is this one modified 2.5 0.5 2.5 1.5 0 0.5 1.5 $\Delta \phi$ (rad) $\Delta \phi$ (rad) structure or two distinct peaks?

PRL 98 232202 (2007)

27

27

structure of away side

 is a division of the away side into a "normal" di-jet and a shoulder structure supported by the data?

baryons on the away side

- enhanced baryons in the shoulder as well!
- no $\Delta \phi$ dependence to baryon/meson ratio
baryons in the away side

away side baryons are enhanced

- central collisions associated B/M approaches single particle B/M ratio
- centrality dependence however, different

Au+Au: Qualitatively Different

PHENIX, PLB 649 (2007) 359, J. Chen Hard Probes 2008, PHENIX PRL 101 082301 (2008)

Au+Au: Qualitatively Different

moderate p_T jets acquire medium properties

PHENIX, PLB 649 (2007) 359, J. Chen Hard Probes 2008, PHENIX PRL 101 082301 (2008)

Au+Au: Qualitatively Different

2

1.5

(GeV/c)

p_{T,assoc}

PHENIX, PLB 649 (2007) 359, J. Chen Hard Probes 2008, PHENIX PRL 101 082301 (2008)

Anne M. Sickles, January 27, 2008

0.5

Hard/Soft Recombination

Hwa, Yang...

- two kinds of quarks:
 - shower, from the hard parton
 - thermal, from the matter
- jet hadrons can include both types of quarks
 - adds energy (thermal quarks) to the jet

drawing R. Hwa

jets could heat up the matter

Fries et al. PRL 94 122301(2005) PHENIX PRL 101 082301 (2008)

 jet loses energy which creates a localized "hot spot" in the matter, these heated partons can then combine together to form correlated (but nonjet hadrons)

jets could heat up the matter

Fries et al. PRL 94 122301(2005) PHENIX PRL 101 082301 (2008)

 jet loses energy which creates a localized "hot spot" in the matter, these heated partons can then combine together to form correlated (but nonjet hadrons)

jets could heat up the matter

Fries et al. PRL 94 122301(2005) PHENIX PRL 101 082301 (2008)

 jet loses energy which creates a localized "hot spot" in the matter, these heated partons can then combine together to form correlated (but nonjet hadrons)

experimental question: how does the Σ correlated p_T compare to p_{T,parton}?

AdS/CFT: Correlations from Neck region

PHENIX, PRC 78 014901 (2008), Noronha et al. arXiv:0807.1038, Neufeld arXiv:0807.2996

AdS/CFT: Correlations from Neck region

PHENIX, PRC 78 014901 (2008), Noronha et al. arXiv:0807.1038, Neufeld arXiv:0807.2996

AdS/CFT: Correlations from Neck region

PHENIX, PRC 78 014901 (2008), Noronha et al. arXiv:0807.1038, Neufeld arXiv:0807.2996

PHENIX, PRC 78 014901 (2008), Noronha et al. arXiv:0807.1038, Neufeld arXiv:0807.2996

PHENIX, PRC 78 014901 (2008), Noronha et al. arXiv:0807.1038, Neufeld arXiv:0807.2996

$D^{\pm} \rightarrow e + X \qquad \qquad 16.0\%$		Decay	Branching Ratio
$D^0 \rightarrow e + X \qquad 6.5\%$	C C	D [±] →e+X	16.0%
U.U.V.		D⁰→e+X	6.5%

$\uparrow \qquad \qquad$		
$\frac{1}{\mathbf{D}^0}$	Decay	Branching Ratio
c-c	D [±] →e+X	16.0%
	D ⁰ →e+X	6.5%

• single particles: measure e[±] from D, B decay

	Decay	Branching Ratio
c-c	D [±] →e+X	16.0%
E	D ⁰ →e+X	6.5%

- single particles: measure e[±] from D, B decay
- near side: two particle correlations: hadrons from D, B decay + other fragmentation products

	Decay	Branching Ratio
c c	D [±] →e+X	16.0%
E	D ⁰ →e+X	6.5%

- single particles: measure e[±] from D, B decay
- near side: two particle correlations: hadrons from D, B decay + other fragmentation products
- away side: recoil heavy quark, longer medium path length

Run 5 p+p

R_{HF} = heavy flavor e[±]/photonic e[±]

PHENIX, PRL 97 252002 (2006)

Run 5 p+p

 most e[±] @ p_T > 2GeV/c come from heavy flavor decay

R_{HF} = heavy flavor e^{\pm} /photonic e^{\pm}

PHENIX, PRL 97 252002 (2006)

Run 5 p+p

- most e[±] @ p_T > 2GeV/c come from heavy flavor decay
- photonic e[±] @ p_T < 5GeV/ c mainly from π^os

R_{HF} = heavy flavor e^{\pm} /photonic e^{\pm}

PHENIX, PRL 97 252002 (2006)

Run 5 p+p

- most e[±] @ p_T > 2GeV/c come from heavy flavor decay
- photonic e[±] @ p_T < 5GeV/
 c mainly from π^os
- subtract the correlations:

R_{HF} = heavy flavor e^{\pm} /photonic e^{\pm}

PHENIX, PRL 97 252002 (2006)

Run 5 p+p

- most e[±] @ p_T > 2GeV/c come from heavy flavor decay
- photonic e[±] @ p_T < 5GeV/
 c mainly from π^os
- subtract the correlations:

R_{HF} = heavy flavor e^{\pm} /photonic e^{\pm}

$$Y_{e_{HF}-h} = \frac{(R_{HF}+1)Y_{e_{incl}-h} - Y_{e_{phot}-h}}{R_{HF}}$$
 phenix, prl 97 252002 (2006)

ephot-h correlations

- e_{phot}: Dalitz decays and decay γ conversions, both from light mesons
- photons also come from light meson decays
- use simulations to map between e_{phot}
 (p_T) & γ(p_T)
 - $e_{phot}(p_{Ti})-h = \Sigma_j w(p_{Ti,j}) \gamma(p_{Tj})-h$
- dominated in both cases by daughter e_{phot}/γ that carry most of the meson p_T

γ p_T (GeV/c)

e-h jet functions

e-h jet functions

e_{HF}-h jet functions

e_{HF}-h jet functions

• $\sigma_{HF} > \sigma_{phot}$, D decays broaden near side

• σ_{HF} consistent with σ_{PYTHIA} (charm production)

• $\sigma_{HF} > \sigma_{phot}$, D decays broaden near side

- σ_{HF} consistent with σ_{PYTHIA} (charm production)
- agreement w/ Run 3 PHENIX result

conditional yields

- near side, D decay dominated, especially at high pT
- away side, mix of hadrons from D decays and fragmentation

***PYTHIA, charm production, default parameters**

Anne M. Sickles, January 27, 2008

41

charm fragmentation

- D carries most of the charm p_T
- charm \rightarrow light hadron fragmentation softer than gluon \rightarrow light hadron

Part. Data Book 42 de Florian et al PRD 76 074033 (2007)

away side compared to light jets

away side compared to light jets

PHENIX PRD 74 072002 (2006)

away side compared to light jets

PHENIX PRD 74 072002 (2006)

e_{HF}-h harder @ same p_{T,trig}
beyond ZYAM

- ZYAM: zero-yield-at-minimum, assume $\Delta \phi$ region without signal
- ZYAM not a good assumption for moderate p_T
 - "hidden" systematic on the yields & widths, especially in wide away side
 - fitting not an optimal way to find the background either (lots of overlapping Gaussians)

beyond ZYAM

- ZYAM: zero-yield-at-minimum, assume $\Delta \phi$ region without signal
- ZYAM not a good assumption for moderate p_T
 - "hidden" systematic on the yields & widths, especially in wide away side
 - fitting not an optimal way to find the background either (lots of overlapping Gaussians)

beyond ZYAM

- ZYAM: zero-yield-at-minimum, assume $\Delta \phi$ region without signal
- ZYAM not a good assumption for moderate p_T
 - "hidden" systematic on the yields & widths, especially in wide away side
 - fitting not an optimal way to find the background either (lots of overlapping Gaussians)

PHENIX, PRC 71 051902 (2005), AS et al, nucl-ex/072007

• random background rate: <n_{trig}><n_{part}>

PHENIX, PRC 71 051902 (2005), AS et al, nucl-ex/072007

- random background rate: <n_{trig}><n_{part}>
- data has extra physics correlation: the event centrality (measurements are done with finite resolution in wide bins)

- random background rate: <n_{trig}><n_{part}>
- data has extra physics correlation: the event centrality (measurements are done with finite resolution in wide bins)
 - .: <n_{trig} x n_{part}> > <n_{trig}><n_{part}>

- random background rate: <ntrig><npart>
- data has extra physics correlation: the event centrality (measurements are done with finite resolution in wide bins)
 - .: <n_{trig} × n_{part}> > <n_{trig}><n_{part}>
 - $\xi \equiv \langle n_{trig} \times n_{part} \rangle / \langle n_{trig} \rangle \langle n_{part} \rangle$

- random background rate: <ntrig><npart>
- data has extra physics correlation: the event centrality (measurements are done with finite resolution in wide bins)
 - .: <n_{trig} × n_{part}> > <n_{trig}><n_{part}>
 - $\xi \equiv \langle n_{trig} \times n_{part} \rangle / \langle n_{trig} \rangle \langle n_{part} \rangle$
 - \rightarrow background rate: $\xi < n_{trig} > < n_{part} >$

PHENIX, PRC 71 051902 (2005), AS et al, nucl-ex/072007

- random background rate: <n_{trig}><n_{part}>
- data has extra physics correlation: the event centrality (measurements are done with finite resolution in wide bins)
 - .: <n_{trig} × n_{part}> > <n_{trig}><n_{part}>
 - $\xi \equiv \langle n_{trig} \times n_{part} \rangle / \langle n_{trig} \rangle \langle n_{part} \rangle$
 - \rightarrow background rate: $\xi < n_{trig} > < n_{part} >$
 - no ZYAM, fitting needed

PHENIX, PRC 71 051902 (2005), AS et al, nucl-ex/072007

 assumption: Glauber Monte Carlo

- assumption: Glauber Monte Carlo
- pick N_{part}, from centrality bin

- assumption: Glauber Monte Carlo
- pick N_{part}, from centrality bin
- pick n_{trig} & n_{part} according to N_{part}

- assumption: Glauber Monte Carlo
- pick N_{part}, from centrality bin
- pick n_{trig} & n_{part} according to N_{part}
 - gives <n_{trig} x n_{part}>, because both yields are based on same N_{part} value

- assumption: Glauber Monte Carlo
- pick N_{part}, from centrality bin
- pick n_{trig} & n_{part} according to N_{part}
 - gives <n_{trig} x n_{part}>, because both yields are based on same N_{part} value
- repeat many times

Conclusions

Conclusions

- matter responds to the passage of a fast parton
 - energy transport, η/s, sound speed, surface bias, coupling strength
- hadrons: probably formed via recombination
 - balance between losing & picking up energy?
- baryons: medium response & recombination
 - possible contributions from higher twist production

• identified particle correlations:

- identified particle correlations:
 - ridge, shoulder, jet many p_T & centrality bins

- identified particle correlations:
 - ridge, shoulder, jet many p_T & centrality bins
 - ridge, shoulder and unmodified di-jet?

- identified particle correlations:
 - ridge, shoulder, jet many p_T & centrality bins
 - ridge, shoulder and unmodified di-jet?
- non-hadron triggers:

- identified particle correlations:
 - ridge, shoulder, jet many p_T & centrality bins
 - ridge, shoulder and unmodified di-jet?
- non-hadron triggers:
 - γ_{dir} , e_{HF} , ... get at mechanisms behind ridge & shoulder

- identified particle correlations:
 - ridge, shoulder, jet many p_T & centrality bins
 - ridge, shoulder and unmodified di-jet?
- non-hadron triggers:
 - γ_{dir} , e_{HF} , ... get at mechanisms behind ridge & shoulder
- lower energy data: $\sqrt{s_{NN}} = 40-100 \text{GeV}$

- identified particle correlations:
 - ridge, shoulder, jet many p_T & centrality bins
 - ridge, shoulder and unmodified di-jet?
- non-hadron triggers:
 - γ_{dir} , e_{HF} , ... get at mechanisms behind ridge & shoulder
- Iower energy data: √s_{NN} = 40-100GeV
 - do the connections between baryons, ridges & shoulders persist?

- identified particle correlations:
 - ridge, shoulder, jet many p_T & centrality bins
 - ridge, shoulder and unmodified di-jet?
- non-hadron triggers:
 - γ_{dir} , e_{HF} , ... get at mechanisms behind ridge & shoulder
- lower energy data: $\sqrt{s_{NN}} = 40-100 \text{GeV}$
 - do the connections between baryons, ridges & shoulders persist?
 - identified particle spectra: x_T distributions

very low pt

200 GeV Au+Au, Centrality: 0-5%, Like-Sign, [200<p 7. 100 Au+Au, Centrality: 0-5%, Like-Sign, [200<p 7. 100 Au+Au, 200<p 7. 100 Au+Au, 200 Au+Au+Au, 200 Au+Au, 200 A

 maybe this means the matter has these properties w/o the jet, the jet just picks them up via coupling

AKK: Old vs. New

Direct vs. Conventional Protons

The most important discriminant of the twist of a pQCD subprocess in a hard hadronic collision is the scaling of the inclusive cross section

$$\frac{d\sigma}{d^3p/E}(pp \to HX) = \frac{F(x_T, \theta_{cm})}{p_T^n}$$

at fixed $x_T = 2p_T/\sqrt{s}$ and θ_{cm} In the original parton model [19] the power

π^{0} -hadron correlations

- meson trigger
- high trigger p_T

π^{0} -hadron correlations

do these data constrain D with a three Gaussian fit? punch through + shoulder

A. Adare Hot Quarks 2008

Mach cone @ SPS energies?

- challenge to hydro/Mach cone models
- what about the ridge?
- importance of intermediate energy scan @ RHIC

near jet-less measurement?

- consistent with local baryon number conversvation
- like jets, but not necessarily recombination models, or direct processes