Heavy Flavor Tagged Jet Correlations

Anne Sickles May 20, 2009

illustration: S. Bass

incoming nuclei

illustration: S. Bass

incoming nuclei

illustration: S. Bass

incoming nuclei

hot matter

illustration: S. Bass

illustration: S. Bass

illustration: S. Bass

• RHIC: ion-ion collisions at up to $\sqrt{s_{NN}}=200 \text{GeV}$

illustration: S. Bass

- RHIC: ion-ion collisions at up to $\sqrt{s_{NN}}=200 \text{GeV}$
- also p+p collsions, crucial baseline

illustration: S. Bass

Au+Au collision

Direct γ

Direct γ

high p_T particle production

p+p collisions

Parton Distribution Functions: Measured in Deep Inelastic Scattering

Hard Scattering Cross Section: Calculated with pQCD

Fragmentation into Hadrons: Measured in e +e- Collisions

high p_T particle production

Au+Au collisions

Parton Distribution Functions: Measured in Deep Inelastic Scattering

Hard Scattering Cross Section: Calculated with pQCD

Parton-Medium Interactions & Hadron Formation

γ : control measurement

R_{AA}(p_T<14GeV/c) consistent with unity

π⁰: light meson

Heavy Flavor via Semi-leptonic decays

$\uparrow \qquad \qquad$		
$\overline{\mathbf{D}^0}$	Decay	Branching Ratio
	D [±] →e+X	16.0%
	D ⁰ →e+X	6.5%
$\mathbf{K}_{\ell^+} \mathbf{V}_{\ell} \mathbf{D}^0$		

- single particles: measure e[±] from D, B decay
- hadronic decays: large backgrounds

problem: how do you know if e[±] came from charm or bottom?

...and heavy quarks?

- electrons from decay of heavy mesons are modified by the matter in heavy ion collisions
 - yields are suppressed at nearly same level as π^0

10

...and heavy quarks?

- electrons from decay of heavy mesons are modified by the matter in heavy ion collisions
 - yields are suppressed at nearly same level as π^0

heavy quarks are a good probe of hot nuclear matter!

PHENIX, PRL 98 172301 (2007)

heavy quark energy loss

- radiative energy loss should be suppressed for heavy quarks:"dead cone effect" (Dokshitzer & Kharzeev)
- some calculations expect large collisional energy loss

RAA(charm)/RAA(light quarks)

experimental question: how does the energy loss pattern of heavy quarks differ from light partons?

final state effects

- jets are produced before the matter, but the see the entire lifetime of the system
- final state effects could change which hadrons are formed

final state effects

- jets are produced before the matter, but the see the entire lifetime of the system
- final state effects could change which hadrons are formed

PHENIX PRC 74 024904 (2006)

basic idea: valence quarks coalesce to form final state hadrons

basic idea: valence quarks coalesce to form final state hadrons

basic idea: valence quarks coalesce to form final state hadrons

basic idea: valence quarks coalesce to form final state hadrons

basic idea: valence quarks coalesce to form final state hadrons

- quark momenta add:
 - $p_T(hadron) > p_T(quark)$
 - baryons get an extra boost→extra quark

basic idea: valence quarks coalesce to form final state hadrons

- quark momenta add:
 - $p_T(hadron) > p_T(quark)$
 - baryons get an extra boost→extra quark
- if heavy quarks also recombine, it could lower their RAA
 - heavy baryons don't decay into electrons as much as mesons

D/B in medium formation

Adil & Vitev PLB649 139 (2007)

2 particle correlations

Quark Matter 2009

2 particle correlations

 complementary to single particle observables

2 particle correlations

- complementary to single particle observables
- different sensitivity to geometry
2 particle correlations

- complementary to single particle observables
- different sensitivity to geometry
- sensitive to energy flow

2 particle correlations

- complementary to single particle observables
- different sensitivity to geometry
- sensitive to energy flow

Mach Cones?

PRL 98 232202 (2007)

Mach Cones?

cone angle:

$$cos \theta_M = rac{ar{c}_s}{v_{jet}}$$

PRL 98 232202 (2007)

Mach Cones?

PRL 98 232202 (2007)

PHENIX, PRL 98 232302 (2007)

PHENIX, PRL 98 232302 (2007)

Anne Sickles

May 20, 2009

17

PHENIX, PRL 98 232302 (2007)

The Landscape: Heavy Flavor in p+p

charm & bottom: theory

knowledge of relative c/b contributions crucial for understanding HF modifications in Au+Au collisions

what can experiment say?

idea: D→eKv, reconstruct eK invariant mass

- heavy meson decay: e & K have opposite signs
 - like sign pairs approximate the background
- compare to simulations to get relative contributions from charm and bottom

arXiv:0903.4851[nucl-ex]

relative $b \rightarrow e$ contribution vs $p_{T,e}$

Anne Sickles

21

two types of electrons

PHENIX, PRL 97 252002 (2006)

two types of electrons

PHENIX, PRL 97 252002 (2006)

separating the correlations

$$Y_{e_{incl}-h} = \frac{N_{e_{HF}}Y_{e_{HF}-h} + N_{e_{phot}}Y_{e_{phot}-h}}{N_{e_{HF}} + N_{e_{phot}}}$$

separating the correlations

separating the correlations

ephot-h correlations

$$Y_{e_{HF}-h} = \frac{(R_{HF}+1)Y_{e_{incl}-h} - Y_{e_{phot}-h}}{R_{HF}}$$

- photonic electrons: Dalitz decays and γ conversions
 - dominantly from $\pi^0 s$
- measure γ_{inc}-h correlations
 - also dominantly from π^0 s
- use MC to map between
 e_{phot}(p_T) & γ_{inc}(p_T)

24

e_{phot}-h correlations (II)

$$Y_{e_{phot}-h}(p_{T,i}) = \sum_{j} w_i(p_{T,j}) Y_{\gamma-h}(p_{T,j})$$

einc-h correlations

adding ephot-h ...

heavy flavor correlations

near side widths

29

near side widths

 $\sigma_{HF} > \sigma_{phot}$: D/B decay kinematics

29

near side widths

good agreement with PYTHIA (charm production)

charm production subprocesses

most of the time a D is not balanced by a mid-rapidity D (caveat: LO calculation)

Vitev et al PRD 74 054010 (2006)

POWHEG NLO Monte Carlo: 2→2 & 2→3 processes

POWHEG NLO Monte Carlo: 2→2 & 2→3 processes

31

• POWHEG NLO Monte Carlo: $2 \rightarrow 2 \& 2 \rightarrow 3$ processes

POWHEG NLO Monte Carlo: 2→2 & 2→3 processes

light parton jets are a significant contribution to the away side correlations

Light Quark Fragmentation

- fragmentation functions from e⁺e⁻ collisions
- most particles carry small fraction of jet energy

Particle Data Book

what about heavy quark jets?

• $c \rightarrow D$ fragmentation hard

• $b \rightarrow B$ fragmentation harder

Particle Data Book

...and the rest of jet energy?

de Florian et al PRD 76 074033 (2007)

conditional yields

- near side: heavy quarks, dominated by decays
- away side: heavy & light partons, fragmentation and decays

comparison to light jets

PHENIX PRD 74 072002 (2006)

PHENIX PRD 74 072002 (2006)

eHF-h harder @ same pT,trig (*≠*pT,parton)

36

effects of the matter... Au+Au

the second seco		γdirect-h	
g,q interact stronglyenergy lo	SS	γ don't interact strongly	1
Quark Matter 2009	Anne M. Sickles	March 31, 2009	3

π⁰-h	γdirect=h
g,q interact stronglyenergy loss surface bias	γ don't interact strongly no surface bias

π⁰-h	γdirect=h
g,q interact stronglyenergy loss	γ don't interact strongly
surface bias	no surface bias
рт,π0 < рт,jet	Рт,ү ~ Рт,jet

π⁰-h	γ _{direct} -h	
g,q interact stronglyenergy loss	γ don't interact strongly	
surface bias	no surface bias	
PT,π0 < PT,jet	Рт,ү ~ Рт,jet	
	away side more likely	
	to be quark:	
	$q + g \rightarrow q + \gamma$	

π^{0} -hadron: opacity

π^{0} -hadron: opacity

Quark Matter 2009

Anne M. Sickles

I_{AA} : π^0 -h & γ_{direct} -h

$I_{AA}: \pi^0 - h \& \gamma_{direct} - h$

• no significant difference between π^0 -h and γ_{dir} -h suppression

$I_{AA}: \pi^0 - h \& \gamma_{direct} - h$

- no significant difference between π^0 -h and γ_{dir} -h suppression
 - just how important is the π^0 surface bias?

π^0 -h: away side shape

no evidence for double peaks for very high $p_T \pi^0$

41

π^0 -h: away side shape

no evidence for double peaks for very high $p_T \pi^0$

don't have the statistical precision to exclude it

41

π^0 -h: away side shape

no evidence for double peaks for very high $p_T \pi^0$

don't have the statistical precision to exclude it

→more data!

π^{0} -h: away side shape?

Anne Sickles

π^{0} -h: away side shape?

Anne Sickles

π^{0} -h: away side shape?

Anne Sickles

Heavy Flavor: Au+Au

Quark Matter 2009

Anne M. Sickles

Au+Au vs p+p

Anne M. Sickles

10-4

0.5

1.5

1

2

2.5

3

3.5 4 p_{T,hadron} (GeV/c)

<**|**_{AA}>

ΔΦ	2.0<рте<3.0GeV/с
0-1.25rad	1.17±0.21
I.25-πrad	1.43±0.31
2.51-πrad	0.67±0.16

<**|**_{AA}>

ΔΦ	2.0< _{рте} <3.0GeV/с
0-1.25rad	1.17±0.21
l.25-πrad	1.43±0.31
2.51-πrad	0.67±0.16

large errors

<**|**_{AA}>

$\Delta \Phi$	2.0<рте<3.0GeV/с
0-1.25rad	1.17±0.21
I.25-πrad	1.43±0.31
2.51-πrad	0.67±0.16

- large errors
- I_{AA}(near side) ~ I
 - consistent with D decays

<**|**_{AA}>

ΔΦ	2.0<р _{Те} <3.0GeV/с	
0-1.25rad	I.17±0.21	
I.25-πrad	I.43±0.31	
2.51-πrad	0.67±0.16	

- large errors
- I_{AA}(near side) ~ I
 - consistent with D decays
- $I_{AA}(1.25-\pi) > I_{AA}(2.51-\pi)$
 - evidence for shoulder?

open heavy flavor is an important frontier in jet physics

- open heavy flavor is an important frontier in jet physics
 - complementary to γ -h & π^0 -h measurements

- open heavy flavor is an important frontier in jet physics
 - complementary to γ -h & π^0 -h measurements
 - it will be crucial for energy loss & hadronization models to describe all these observables

- open heavy flavor is an important frontier in jet physics
 - complementary to γ -h & π^0 -h measurements
 - it will be crucial for energy loss & hadronization models to describe all these observables
- however, it is harder to interpret, more statistics starved and a harder measurement than γ -h or π^0 -h

a promising future

- p+p: jet properties & understanding parton subprocesses
- Run 10: 200 GeV Au+Au: 4-6x statistics for PHENIX e_{HF}-h
 - luminosity & acceptance increases
 - Hadron Blind Detector can reject some photonic electrons further improving the measurement
 - 2-3x statistics for π^0 -h & γ_{dir} -h
- Run II: Silicon Vertex Detector:
 - separation of charm and bottom

I_{AA} straight line fits

ΔΦ	1.5<р _{Те} <2.0GeV/с	2.0<р _{Те} <3.0GeV/с	3.0<р _{Те} <4.0GeV/с
0-1.25rad	0.53±0.17	1.17±0.21	0.29±0.40
I.25-πrad	I.18±0.28	1.43±0.31	1.05±0.63
2.51-πrad	0.52±0.13	0.67±0.16	0.47±0.31

conclusions & outlook

HF correlations provide a new tool to study passage of fast parton through matter

- c/b ratio in p+p consistent with FONLL
 - this ratio crucial to understanding e± results in Au+Au
- e_{HF}-h conditional yields in p+p measured
 - method established to extract HF correlations
 - useful for testing charm fragmentation into hadrons
 - baseline for Au+Au results, being analyzed now

Double Peak Structure

PHENIX, PRC 78 014901 (2008), Noronha et al. arXiv:0807.1038, Neufeld arXiv:0807.2996

Double Peak Structure

AdS/CFT: Correlations from Neck region

PHENIX, PRC 78 014901 (2008), Noronha et al. arXiv:0807.1038, Neufeld arXiv:0807.2996

Double Peak Structure

PHENIX, PRC 78 014901 (2008), Noronha et al. arXiv:0807.1038, Neufeld arXiv:0807.2996
Double Peak Structure

PHENIX, PRC 78 014901 (2008), Noronha et al. arXiv:0807.1038, Neufeld arXiv:0807.2996

Anne Sickles

RAA of hadrons

51

and what about heavy quarks?

- 1.04 for a 4 GeV bottom quark
- I.2 for a 3GeV charm quark
- work backward, if you wanted to see this number march in to 0.7 at RHIC you would need v= 0.45 which is a 2.3GeV bottom quark

are the measurements sensitive?

	$cos heta_M = rac{ar{c}_s}{v_{jet}}$	
phase	CS	θ _M (rad)
QGP	I/√3 ~ 0.57	0.95
hadron gas	√0.2 ~ 0.44	1.1
mixed phase	0	I.57?
RHIC (time average)	0.33	I.2

numbers from: Casalderry-Solona, et al hep-ph/0411315

53