Jet Quenching at RHIC vs LHC in Light of Recent dAu vs pPb Controls

RIKEN BNL Research Center Workshop April 15-17, 2013 at Brookhaven National Laboratory 7. Sal

Homepage

Event Registration Agenda

Contact Us Event Information -

Jets Quenching at RHIC: Present and Future

Anne Sickles Brookhaven National Lab

- LHC has brought the field fantastic new jet measurements
 - high jet rates, huge detectors, new system, large kinematic reach

what do we want from jets @ RHIC?

- probe the properties of jets near Tc
- exploit the large collision energy difference between RHIC and LHC to understand the physics of quenching
- exploit RHIC's flexibility to study different systems, small and large:
 - geometry, initial state effects...

quenching vs temperatue

strongest quenching at the highest temperature in the collision

RHIC, 200GeV

q(T) change the initial collision temperature by changing the collision energy

modified fragmentation patterns

A. M. Sickles

PHENIX: 1212.3323 A. M. Sickles

quenching vs $\sqrt{s_{NN}}$

- $R_{AA} \sim 0.5$ at 39GeV
- p_T reach ~10GeV at 62.4GeV, R_{AA} consistent with 200GeV
- *pA measurements needed to understand initial state effect

Horowitz & Gyulassy NPA872 265, PHENIX PRL 109 152301

a peak into the future of hard probes...

RHIC 200GeV, 30-40%

p_T [GeV]

η/s(T)

2

1.5

filled: STAR prelim.

open: PHENIX

Schenke et al PRL108 252301 Gale et al 1209.6330

0.2

0.15

0.1

0.05

0

0

V₄

v₅

0.5

 $\langle v_n^2 \rangle^{1/2}$

leveraging RHIC/LHC differences

 changing both the collision energy and the shape of the initial system as compared to the ridge seen in pPb

sPHENIX

- upgrade optimized around jet/di-jet/photon measurements
- high rate, large uniform acceptance over $|\eta| < 1$, hadronic calorimetry
- submitted last month to DOE for CD-0 review
 HCAL OUTER
 HCAL INNER
 EMCAL
 SOLENOID

inside sPHENIX

How Realistic Is this at RHIC?

RHIC Jet Rates

jet reconstruction performance

- how well can we measure real jets?
 - jet energy scale, jet energy resolution
- how are the jet measurements impacted by background fluctuations masquerading as jets--fakes
- large HIJING study
 - embedding PYTHIA jets into HIJING events to evaluate jet reconstruction performance
 - 750M minimum bias HIJING events to study relative rates of fake and real jets in HI background
- iterative background subtraction as in ATLAS

detailed study in: Hanks, Sickles et al: PRC86 024908

reconstruction performance

- good performance in heavy ion background
- resolution only from the underlying event, no detector resolution included
 A. M. Sickles

A. M. Sickles

why are large jets so interesting?

- evidence for large shape modifications in the region accessible at RHIC
- experimentally: require high statistics & good control of systematics 34

dijet measurements

- full Geant 4 detector simulation of dijets embedded in 0-10% central HIJING
- unfolding recovers the truth distribution very well

y-jet measurements

- $\gamma/\pi 0$ very large at RHIC, large numbers out >30GeV
- unfolding the jet energy recovers the truth distributions from Geant4 simulation into central HIJING

PHENIX (F)VTX

STAR HFT

 upgrades coming online to address charm and bottom separation at RHIC
 IST 1 layer at 14 cm

g

g

• essential piece of the jet quenching puzzle

jet quenching at RHIC

- current measurements show evidence for softening of fragmentation and broadening of angular correlations
- ATLAS measurements show R dependence of jet suppression at jet energies accessible at RHIC
- together with LHC constrain T dependence of jet quenching
- extremely interesting physics accessible at RHIC
- sPHENIX: full calorimeter coverage at mid-rapidity
 - take advantage of full RHIC luminosity: large acceptance, high rate
 - becomes central to ePHENIX
 - proposal submitted to DOE for CD-0 review last month!
- silicon detectors at STAR and PHENIX will provide handle on heavy flavor
- detector upgrades critical to the success of hard probes at RHIC

backups

further exploration of T dependence

well reconstructed jets

- b = 1.8 fm HIJINGdijet event
- well reconstructed with anti- $k_T R = 0.2$

b=2.4 HIJING event, no true jets

3

2

0

1-1

η

Ge

fake jets

30 & 10GeV fake jets with anti-k_T **R=0.4**

however, we looked at 750M+ events! need quantitative rate assessment

30

iterative jet finding algorithm

- uses anti-k_T algorithm
- inspired by ATLAS algorithm