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in approximately the same direction and thus having full pair ac-
ceptance (with a bin width of 0.3 in !η and π/16 in !φ). There-
fore, the ratio B(0,0)/B(!η,!φ) is the pair-acceptance correction
factor used to derive the corrected per-trigger-particle associated
yield distribution. The signal and background distributions are first
calculated for each event, and then averaged over all the events
within the track multiplicity class.

Each reconstructed track is weighted by the inverse of an effi-
ciency factor, which accounts for the detector acceptance, the re-
construction efficiency, and the fraction of misreconstructed tracks.
Detailed studies of tracking efficiencies using MC simulations and
data-based methods can be found in [23]. The combined geometri-
cal acceptance and efficiency for track reconstruction exceeds 50%
for pT ≈ 0.1 GeV/c and |η| < 2.4. The efficiency is greater than 90%
in the |η| < 1 region for pT > 0.6 GeV/c. For the multiplicity range
studied here, little or no dependence of the tracking efficiency on
multiplicity is found and the rate of misreconstructed tracks re-
mains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the
pythia, hijing and hydjet event generators, respectively, yield ef-
ficiency correction factors that vary due to the different kinematic
and mass distributions for the particles produced in these gen-
erators. Applying the resulting correction factors from one of the
generators to simulated data from one of the others gives asso-
ciated yield distributions that agree within 5%. Systematic uncer-
tainties due to track quality cuts and potential contributions from
secondary particles (including those from weak decays) are exam-
ined by loosening or tightening the track selections on dz/σ (dz)
and dT /σ (dT ) from 2 to 5. The associated yields are found to be
insensitive to these track selections within 2%.

5. Results

Fig. 1 compares 2-D two-particle correlation functions for
events with low (a) and high (b) multiplicity, for pairs of charged
particles with 1 < pT < 3 GeV/c. For the low-multiplicity selec-
tion (Noffline

trk < 35), the dominant features are the correlation peak
near (!η,!φ) = (0,0) for pairs of particles originating from the
same jet and the elongated structure at !φ ≈ π for pairs of parti-
cles from back-to-back jets. To better illustrate the full correlation
structure, the jet peak has been truncated. High-multiplicity events
(Noffline

trk ! 110) also show the same-side jet peak and back-to-
back correlation structures. However, in addition, a pronounced
“ridge”-like structure emerges at !φ ≈ 0 extending to |!η| of at
least 4 units. This observed structure is similar to that seen in
high-multiplicity pp collision data at

√
s = 7 TeV [17] and in AA

collisions over a wide range of energies [3–10].
As a cross-check, correlation functions were also generated for

tracks paired with ECAL photons, which originate primarily from
decays of π0s, and for pairs of ECAL photons. These distributions
showed similar features as those seen in Fig. 1, in particular the
ridge-like correlation for high multiplicity events.

To investigate the long-range, near-side correlations in finer
detail, and to provide a quantitative comparison to pp results,
one-dimensional (1-D) distributions in !φ are found by averag-
ing the signal and background two-dimensional (2-D) distributions
over 2 < |!η| < 4 [7,8,17]. In the presence of multiple sources of
correlations, the yield for the correlation of interest is commonly
estimated using an implementation of the zero-yield-at-minimum
(ZYAM) method [26]. A second-order polynomial is first fitted to
the 1-D !φ correlation function in the region 0.1 < |!φ| < 2. The
minimum value of the polynomial, CZYAM, is then subtracted from
the 1-D !φ correlation function as a constant background (con-
taining no information about correlations) to shift its minimum
to be at zero associated yield. The statistical uncertainty on the

Fig. 1. 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of
charged particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity
events (Noffline

trk < 35) and (b) for a high-multiplicity selection (Noffline
trk ! 110). The

sharp near-side peaks from jet correlations have been truncated to better illustrate
the structure outside that region.

minimum level of 1
Ntrig

dNpair

d!φ obtained by the ZYAM procedure as
well as the deviations found by varying the fit range in !φ give
an absolute uncertainty of ±0.0015 on the associated yield, inde-
pendent of multiplicity and pT.

Fig. 2 shows the results for pPb data (solid circles) for various
selections in pT and multiplicity Noffline

trk , with pT increasing from
left to right and multiplicity increasing from top to bottom. The
results for pp data at

√
s = 7 TeV, obtained using the same proce-

dure [17], are also plotted (open circles).
A clear evolution of the !φ correlation function as a function

of both pT and Noffline
trk is observed. For the lowest multiplicity se-

lection in pp and pPb the correlation functions have a minimum
at !φ = 0 and a maximum at !φ = π , reflecting the correla-
tions from momentum conservation and the increasing contribu-
tion from back-to-back jet-like correlations at higher pT. Results
from the hijing [24] model (version 1.383), shown as dashed lines,
qualitatively reproduce the shape of the correlation function for
low Noffline

trk .
For multiplicities Noffline

trk ! 35, a second local maximum near
|!φ| ≈ 0 emerges in the pPb data, corresponding to the near-side,
long-range ridge-like structure. In pp data, this second maximum
is clearly visible only for Noffline

trk > 90. For both pp and pPb col-
lisions, this near-side correlated yield is largest in the 1 < pT <
2 GeV/c range and increases with increasing multiplicity. While
the evolution of the correlation function is qualitatively similar in
pp and pPb data, the absolute near-side correlated yield is signifi-
cantly larger in the pPb case.

In contrast to the data, the hijing calculations show a correlated
yield of zero at !φ = 0 for all multiplicity and pT selections. The
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12 7 Long-Range Correlations in 7 TeV Data
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Figure 7: 2-D two-particle correlation functions for 7 TeV pp (a) minimum bias events with
pT > 0.1 GeV/c, (b) minimum bias events with 1 < pT < 3 GeV/c, (c) high multiplicity
(Noffline

trk � 110) events with pT > 0.1 GeV/c and (d) high multiplicity (Noffline
trk � 110) events

with 1 < pT < 3 GeV/c. The sharp near-side peak from jet correlations is cut off in order to
better illustrate the structure outside that region.

of particles and, therefore, has a qualitatively similar effect on the shape as the particle pT cut
on minimum bias events (compare Fig. 7b and Fig. 7c). However, it is interesting to note that
a closer inspection of the shallow minimum at Df ⇡ 0 and |Dh| > 2 in high multiplicity pT-
integrated events reveals it to be slightly less pronounced than that in minimum bias collisions.

Moving to the intermediate pT range in high multiplicity events shown in Fig. 7d, an unex-
pected effect is observed in the data. A clear and significant “ridge”-like structure emerges
at Df ⇡ 0 extending to |Dh| of at least 4 units. This is a novel feature of the data which has
never been seen in two-particle correlation functions in pp or pp̄ collisions. Simulations using
MC models do not predict such an effect. An identical analysis of high multiplicity events in
PYTHIA8 [34] results in correlation functions which do not exhibit the extended ridge at Df ⇡0
seen in Fig. 7d, while all other structures of the correlation function are qualitatively repro-
duced. PYTHIA8 was used to compare to these data since it produces more high multiplicity
events than PYTHIA6 in the D6T tune . Several other PYTHIA tunes, as well as HERWIG++ [30]
and Madgraph [35] events were also investigated. No evidence for near-side correlations cor-
responding to those seen in data was found.

The novel structure in the high multiplicity pp data is reminiscent of correlations seen in rel-
ativistic heavy ion data. In the latter case, the observed long-range correlations are generally

(the away-side) is also broadened relative to peripheral
events, consistent with the presence of a long-range com-
ponent in addition to that seen in peripheral events.

The strength of the long-range component is quantified
by the ‘‘per-trigger yield,’’ Yð!!Þ, which measures the
average number of particles correlated with each trigger
particle, folded into the 0-" range [2,17–19],

Yð!!Þ ¼
!R

Bð!!Þd!!
"Na

"
Cð!!Þ $ bZYAM; (2)

where Na denotes the number of efficiency-weighted trig-
ger particles, and bZYAM represents the pedestal arising
from uncorrelated pairs. The parameter bZYAM is deter-
mined via a zero-yield-at-minimum (ZYAM) method
[17,21] in which a second-order polynomial fit to Cð!!Þ
is used to find the location of the minimum point,!!ZYAM,
and from this to determine bZYAM. The stability of the fit is
studied by varying the !! fit range. The uncertainty in
bZYAM depends on the local curvature around !!ZYAM,
and is estimated to be 0.03%–0.1% of the minimum value
of Cð!!Þ. At high pT where the number of measured
counts is low, this uncertainty is of the same order as the
statistical uncertainty.

The systematic uncertainties due to the tracking effi-
ciency are found to be negligible for Cð!!Þ, since detector
effects largely cancel in the correlation function ratio.

However Yð!!Þ is sensitive to the uncertainty on the track-
ing efficiency correction for the associated particles. This
uncertainty is estimated by varying the track quality cuts
and the detector material in the simulation, reanalyzing the
data using corresponding Monte Carlo efficiencies and
evaluating the change in the extracted Yð!!Þ. The resulting
uncertainty on Yð!!Þ is estimated to be 2.5% due to the
track selection and 2%–3% related to the limited knowledge
of detector material. The analysis procedure is validated by
measuring correlation functions in fully simulated HIJING

events [15,16] and comparing it to the correlations mea-
sured using the generated particles. The agreement is better
than 2% for Cð!!Þ and better than 3% for Yð!!Þ.
Figure 2(c) shows the Yð!!Þ distributions for 2<

j!#j< 5 in peripheral and central events separately. The
yield for the peripheral events has an approximate 1$
cos!! shape with an away-side maximum, characteristic
of a recoil contribution. In contrast, the yield in the central
events has near-side and away-side peaks with the away-
side peak having a larger magnitude. These features are
consistent with the onset of a significant cos2!! compo-
nent in the distribution. To quantify further the properties
of these long-range components, the distributions are inte-
grated over j!!j< "=3 and j!!j> 2"=3, and plotted as
a function of"EPb

T in Fig. 2(d). The near-side yield is close
to 0 for "EPb

T < 20 GeV and increases with "EPb
T , consis-

tent with the CMS result [8]. The away-side yield shows a
similar variation as a function of "EPb

T , except that it starts
at a value significantly above zero, even for events with low
"EPb

T . The yield difference between these two regions is
found to be approximately independent of"EPb

T , indicating
that the growth in the yield with increasing "EPb

T is the
same on the near-side and away-side.
To further investigate the connection between the near-

side and away-side, the Yð!!Þ distributions for peripheral
and central events are shown in Fig. 3 in various pa

T ranges
with 0:5< pb

T < 4 GeV. Distributions of the difference
between central and peripheral yields, !Yð!!Þ, are also
shown in this Figure. This difference is observed to be
nearly symmetric around !! ¼ "=2. To illustrate this
symmetry, the !Yð!!Þ distributions in Fig. 3 are overlaid
with functions a0 þ 2a2 cos2!! and a0 þ 2a2 cos2!!þ
2a3 cos3!!, with the coefficients calculated as an ¼
h!Yð!!Þ cosn!!i. Using only the a0 and a2 terms
describes the !Y distributions reasonably well, indicating
that the long-range component of the two-particle correla-
tions can be approximately described by a recoil contribu-
tion plus a!!-symmetric component. The inclusion of the
a3 term improves slightly the agreement with the data.
The near-side and away-side yields integrated over

j!!j< "=3 and j!!j> 2"=3, respectively (Yint), and
the differences between those integrated yields in central
and peripheral events (!Yint) are shown in Fig. 4 as a
function of pa

T. The yields are shown separately for the
two "EPb

T ranges in panels (a) and (b) and the differences
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FIG. 2 (color online). Two-dimensional correlation functions
for (a) peripheral events and (b) central events, both with a
truncated maximum to suppress the large correlation at
ð!#;!!Þ ¼ ð0; 0Þ; (c) the per-trigger yield !! distribution
together with pedestal levels for peripheral (bPZYAM) and central
(bCZYAM) events, and (d) integrated per-trigger yield as function
of "EPb

T for pairs in 2< j!#j< 5. The shaded boxes represent
the systematic uncertainties, and the statistical uncertainties are
smaller than the symbols.
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Long-range angular correlations in p–Pb collisions ALICE Collaboration

agreement with the presented results.

Fig. 4: Left: v2 (black closed symbols) and v3 (red open symbols) for different multiplicity classes
and overlapping pT,assoc and pT,trig intervals. Right: Near-side (black closed symbols) and away-side
(red open symbols) ridge yields per unit of Dh for different pT,trig and pT,assoc bins as a function of the
multiplicity class. The error bars show statistical and systematic uncertainties added in quadrature. In
both panels the points are slightly displaced horizontally for visibility.

To extract information on the yields and widths of the excess distributions in Fig. 3 (bottom
right), a constant baseline assuming zero yield at the minimum of the fit function (Eq. 2) is sub-
tracted. The remaining yield is integrated on the near side and on the away side. Alternatively,
a baseline evaluated from the minimum of a parabolic function fitted within |Dj �p/2|< 1 is
used; the difference on the extracted yields is added to the systematic uncertainties. The uncer-
tainty imposed by the residual near-side jet peak on the yield is evaluated in the same way as
for the vn coefficients. The near-side and away-side ridge yields are shown in the right panel of
Fig. 4 for different event classes and for different combinations of pT,trig and pT,assoc intervals.
The near-side and away-side yields range from 0 to 0.08 per unit of Dh depending on multiplic-
ity class and pT interval. It is remarkable that the near-side and away-side yields always agree
within uncertainties for a given sample despite the fact that the absolute values change substan-
tially with event class and pT interval. Such a tight correlation between the yields is non-trivial
and suggests a common underlying physical origin for the near-side and the away-side ridges.

From the baseline-subtracted per-trigger yields the square root of the variance, s , within |Dj|<
p/2 and p/2 < Dj < 3p/2 for the near-side and away-side region, respectively, is calculated.
The extracted widths on the near side and the away side agree with each other within 20%
and vary between 0.5 and 0.7. There is no significant pT dependence, which suggests that the
observed ridge is not of jet origin.

The analysis has been repeated using the forward ZNA detector instead of the VZERO for the
definition of the event classes. Unlike in nucleus–nucleus collisions, the correlation between
forward energy measured in the ZNA and particle density at central rapidities is very weak
in proton–nucleus collisions. Therefore, event classes defined as fixed fractions of the sig-
nal distribution in the ZNA select different events, with different mean particle multiplicity at
midrapidity, than the samples selected with the same fractions in the VZERO detector. While
the event classes selected with the ZNA span a much smaller range in central multiplicity den-
sity, they also minimize any autocorrelation between multiplicity selections and, for example,
jet activity. With the ZNA selection, we find qualitatively consistent results compared to the
VZERO selection. In particular, an excess in the difference between low-multiplicity and high-
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FIG. 1. Anatomy of di-hadron correlations. The glasma graph on the left illustrates its its schematic
contribution to the double inclusive cross-section (dashed orange curve). On the right is the back-

to-back graph and the shape of its yield (dashed blue curve). The grey blobs denote emissions all
the way from beam rapidities to those of the triggered gluons. The solid black curve represents
the sum of contributions from glasma and back-to-back graphs. The shaded region represents the

Associated Yield (AY) calculated using the zero-yield-at-minimum (ZYAM) procedure. Figure
from ref. [9].

The paper is organized as follows. In the next section, we will present the formulae used
in the computation of Glasma and BFKL graphs. Since all details have been discussed pre-
viously in [9] and references therein, we will reintroduce them briefly only for completeness,
our focus here being the understanding of the systematics of the new CMS p+Pb data. In
section 3, we will discuss in detail results in the CGC, compare these to the data, and make
predictions for as yet unpublished data. In the final section, we will summarize our con-
clusions, discuss alternative interpretations and further refinements and tests of the CGC
framework.

II. GLASMA AND BFKL CONTRIBUTIONS IN THE CGC EFT

The collimated correlated two-gluon production Glasma and BFKL graphs are illustrated
in Fig. (1). The collimated contributions from all the Glasma graphs can be compactly
written as

d2N corr.
Glasma

d2pTd2qTdypdyq
=

αS(pT )αS(qT )

4π10

N2
C

(N2
C − 1)3 ζ

S⊥

p2
Tq

2
T

Kglasma

×

[

∫

kT

(D1 +D2) +
∑

j=±

(

A1(pT , jqT ) +
1

2
A2(pT , jqT )

)

]

. (1)

3

CGC/Glasma

PIOTR BOŻEK PHYSICAL REVIEW C 85, 014911 (2012)

0.02
0.04
0.06
0.08

0.1
0.12 d-Pb 3.11TeV

part N≤27 

{2}3v
}3Ψ{3v

nv

0.02
0.04
0.06
0.08

0.1
0.12  26≤ part N≤16 

PS
η

-4 -3 -2 -1 0 1 2 3 4
0

0.02
0.04
0.06
0.08

0.1
0.12  15≤ part N≤10 

{2}2v
}2Ψ{2v

FIG. 15. (Color online) Same as Fig. 14 but for d-Pb interactions,
for centralities 0%–5% (top panel), 5%–30% (middle panel), and
30%–50% (bottom panel).

are solved numerically in the proper time τ =
√

t2 − z2 on a
grid in the transverse coordinates x, y and the space-time rapid-
ity η‖, starting from τ0 = 0.6 fm/c. We use s0 = 0.72 GeV3

in (2.4) for both p-Pb and d-Pb collisions, which gives the
expected final multiplicities. We take for the relaxation time
τπ = 3η

T s
, and we assume τ$ = τπ . The initial fluid velocity

uµ is taken as the Bjorken flow, the initial stress corrections
from shear viscosity correspond to the Navier-Stokes formula,
while the initial bulk viscosity corrections are zero, $(τ0) = 0.
The details of the solution in (2 + 1)-D and (3 + 1)-D models
are given in [12,16].

The shear viscosity to entropy ratio in our calculation is not
constant. It takes the value η/s = 0.08 in the plasma phase
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FIG. 16. (Color online) The elliptic flow coefficient of charged
particles as a function of transverse momentum around y = 0 in the
laboratory frame for p-Pb interactions. The dashed, dashed-dotted,
and solid lines correspond to the three centrality classes defined by
the number of participant nucleons, Npart ! 18, 17 ! Npart ! 11, and
10 ! Npart ! 8, respectively.
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FIG. 17. (Color online) Same as Fig. 16 but for the triangular flow.

and increases in the hadronic phase [16]:
η

s
(T ) = ηHG

s
fHG(T ) + [1 − fHG(T )]

ηQGP

s
, (3.5)

with ηHG/s = 0.5, ηQGP /s = 0.08, and fHG(T ) =
1/{exp[(T − THG)/%T ] + 1}, where THG = 130 MeV
and %T = 30 MeV. The bulk viscosity is nonzero in the
hadronic phase:

ζ

s
(T ) = ζHG

s
fζ (T ), (3.6)

with ζHG/s = 0.04 and fζ (T ) = 1/{exp[(T − Tζ )/%Tζ ]+1},
where Tζ = 160 MeV and %Tζ = 4 MeV. The equation of state
is an interpolation of lattice QCD results at high temperatures
[33] and a hadron gas model equation of state at lower
temperatures. In constructing the equation of state we follow
the procedure of [34]. The temperature dependence of the
sound velocity has no soft point [16].

The hydrodynamic evolution stops at the freeze-out tem-
perature of 135 MeV. At the freeze-out hypersurface particle
emission is done following the Cooper-Frye formula in the
event generator THERMINATOR [35], with viscous corrections
to the equilibrium momentum distribution f0,

f = f0 + δfshear + δfbulk. (3.7)

We use quadratic corrections in momentum for the shear
viscosity,

δfshear = f0 (1 ± f0)
1

2T 2(ε + p)
pµpνπµν, (3.8)
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FIG. 18. (Color online) Same as Fig. 16 but d-Pb interactions.
The dashed, dashed-dotted, and solid lines correspond to the three
centrality classes defined by the number of participant nucleons,
Npart ! 27, 26 ! Npart ! 16, and 15 ! Npart ! 10, respectively.
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minimizing jet effect in PHENIX

• normal two particle correlations: look at as 
high pT particles as possible

• minimizes combinatoric background, maximizes 
jet correlations

• near side jets are a small |Δη| correlation
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for different ptrig
T in each passoc

T interval. The background
level decreases rapidly as passoc

T is raised, e.g., by an order
of magnitude between the two rows in Fig. 1.

Near-side peaks are seen in all panels and indicate larger
yields for higher ptrig

T at fixed passoc
T . Such an increase in the

correlated yield is expected if the correlation is dominated
by jet fragmentation, with higher ptrig

T biasing towards
higher ET jets. An away-side peak is not apparent at the
lowest ptrig

T , consistent with previous studies of !! corre-
lations in central Au! Au collisions in similar ptrig

T and
passoc
T ranges [12]. However, an away-side peak emerges

clearly above the background as ptrig
T is increased. The

narrow, back-to-back peaks are indicative of the azimu-
thally back-to-back nature of dijets observed in elementary
collisions.

Figure 2 shows the !! distributions for the highest ptrig
T

range in Fig. 1 (8< ptrig
T < 15 GeV=c) for midcentral

(20%–40%) and central Au! Au collisions, as well as
for d! Au collisions. passoc

T increases from top to bottom;
for the highest passoc

T (lower panels), the combinatorial
background is negligible. We observe narrow correlation
peaks in all passoc

T ranges. For each passoc
T , the near-side

peak shows similar correlation strength above background
for the three systems, while the away-side correlation
strength decreases from d! Au to central Au! Au. For
8<ptrig

T < 15 GeV=c and passoc
T > 6 GeV=c, a Gaussian

fit to the away-side peak finds a width of "!! " 0:24#
0:07 for d! Au and 0:20# 0:02 and 0:22# 0:02 for
20%–40% and 0%–5% Au! Au collisions, respectively.

No significant dependence of the widths on system or
centrality is observed.

To quantify the correlated near- and away-side yields,
we integrate the area under the peaks (near-side j!!j<
0:63; away-side j!!$ #j< 0:63) and subtract the non-
jetlike background. In previous analyses at lower pT , an-
isotropic (‘‘elliptic’’) flow contributed significantly to the
measured two-particle correlation, leading to large uncer-
tainties in the extraction of jetlike yields [14,15]. In this
analysis, the background contribution due to elliptic flow is
estimated using a function B%1! v2fpassoc

T gv2fptrig
T g&

cos'2!!(), where the v2 are extracted from standard
elliptic flow analysis [14] and B is fitted to the region
between the peaks (0:63< j!!j< 2:51), and is appre-
ciable only for the lowest passoc

T range in Fig. 2. The
uncertainty in the magnitude of elliptic flow introduces a
small systematic uncertainty less than 5% on the extracted
associated yields (Fig. 3).

Figure 3 shows the centrality dependence of the near-
and away-side yields for the ptrig

T and passoc
T ranges in Fig. 2.

The leftmost points in each panel correspond to d! Au
collisions, which we assume provide the reference distri-
bution for jet fragmentation in vacuum. The near-side
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for different ptrig
T in each passoc

T interval. The background
level decreases rapidly as passoc

T is raised, e.g., by an order
of magnitude between the two rows in Fig. 1.

Near-side peaks are seen in all panels and indicate larger
yields for higher ptrig

T at fixed passoc
T . Such an increase in the

correlated yield is expected if the correlation is dominated
by jet fragmentation, with higher ptrig

T biasing towards
higher ET jets. An away-side peak is not apparent at the
lowest ptrig

T , consistent with previous studies of !! corre-
lations in central Au! Au collisions in similar ptrig

T and
passoc
T ranges [12]. However, an away-side peak emerges

clearly above the background as ptrig
T is increased. The

narrow, back-to-back peaks are indicative of the azimu-
thally back-to-back nature of dijets observed in elementary
collisions.

Figure 2 shows the !! distributions for the highest ptrig
T

range in Fig. 1 (8< ptrig
T < 15 GeV=c) for midcentral

(20%–40%) and central Au! Au collisions, as well as
for d! Au collisions. passoc
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for the highest passoc

T (lower panels), the combinatorial
background is negligible. We observe narrow correlation
peaks in all passoc

T ranges. For each passoc
T , the near-side

peak shows similar correlation strength above background
for the three systems, while the away-side correlation
strength decreases from d! Au to central Au! Au. For
8<ptrig

T < 15 GeV=c and passoc
T > 6 GeV=c, a Gaussian

fit to the away-side peak finds a width of "!! " 0:24#
0:07 for d! Au and 0:20# 0:02 and 0:22# 0:02 for
20%–40% and 0%–5% Au! Au collisions, respectively.

No significant dependence of the widths on system or
centrality is observed.
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T g&
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ciable only for the lowest passoc
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small systematic uncertainty less than 5% on the extracted
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• keep one particle at very low pT

• maximize sensitivity to underlying event

• select as large |Δη| as possible (|η|< 0.35)

• 0.48 < |Δη| < 0.7



A. M. Sickles

centrality dependence

6

 (rad)q6
0 0.5 1 1.5 2 2.5 3

)q
6

Y(
6

),q
6

Y(

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

-310=

[0.75,1.0] GeV/c�[0.5,0.75]
 [0.48,0.7]D|d6|
 0-5% d+AucY
 50-88% d+AupY
 0-5% d+AucY
 50-88% d+AupY

PHENIX: 1303.1794

central

peripheral



A. M. Sickles

centrality dependence

7

 (rad)φΔ
0 0.5 1 1.5 2 2.5 3

)φ
Δ

Y(
Δ

), φ
Δ

Y(

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

-310×

[0.75,1.0] GeV/c⊗[0.5,0.75]
 [0.48,0.7]∈| ηΔ = 200 GeV  |NNsd+Au 

 0-5%cY
 50-88%pY

p-YcY = YΔ
))φΔcos(2

2
(1+2a0a

 0-5%cY
 50-88%pY

p-YcY = YΔ
))φΔcos(2

2
(1+2a0a

PHENIX: 1303.1794



A. M. Sickles 8
PHENIX: 1303.1794

centrality 
dependence 
consistently 
described by 
cos2Δφ shape
for many pT 

bins



A. M. Sickles 8
PHENIX: 1303.1794

centrality 
dependence 
consistently 
described by 
cos2Δφ shape
for many pT 

bins
but is this just an 

artifact of  the 
small |Δη| 
acceptance?
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d Au
Muon Piston Calorimeters

both d-going & Au-
going directions

3 < |η| < 4
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no evidence for long range correlation at Δφ~0

however, this is at relatively high pT and with a particle in the 
d-going direction→not the most sensitive place to look...
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E. J. Kim,8 Y.-J. Kim,22 E. Kinney,11 Á. Kiss,15 E. Kistenev,5 L. Kochenda,49 B. Komkov,49 M. Konno,59 J. Koster,22

A. Král,13 A. Kravitz,12 G. J. Kunde,35 K. Kurita,52,50 M. Kurosawa,50 Y. Kwon,63 G. S. Kyle,45 R. Lacey,55 Y. S. Lai,12

J. G. Lajoie,25 A. Lebedev,25 D.M. Lee,35 J. Lee,16 K. B. Lee,30 K. S. Lee,30 M. J. Leitch,35 M.A. L. Leite,54 X. Li,9

P. Lichtenwalner,41 P. Liebing,51 L. A. Linden Levy,11 T. Liška,13 A. Litvinenko,26 H. Liu,35 M.X. Liu,35 B. Love,60
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N. Saito,28 T. Sakaguchi,5 K. Sakashita,50,58 V. Samsonov,49 S. Sano,10,61 T. Sato,59 S. Sawada,28 K. Sedgwick,6 J. Seele,11

R. Seidl,22,51 R. Seto,6 D. Sharma,62 I. Shein,21 T.-A. Shibata,50,58 K. Shigaki,20 M. Shimomura,59 K. Shoji,32,50 P. Shukla,3

A. Sickles,5 C. L. Silva,25 D. Silvermyr,46 C. Silvestre,14 K. S. Sim,30 B. K. Singh,2 C. P. Singh,2 V. Singh,2 M. Slunečka,7
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FIG. 1: Measured pseudorapidity distributions of charged
particles from d + Au collisions at

√
s

NN
= 200 GeV as a

function of collision centrality. Shaded bands represent 90%
confidence level systematic errors and the statistical errors are
negligible. The minimum-bias distribution is shown as open
diamonds [10].

in the primary event trigger and in the offline event
selection.

The centrality determination was based on the ob-
served total energy deposited in the Ring counters, ERing,
which is proportional to the number of charged particles
hitting these detectors. The choice of this centrality
measure was based on extensive studies utilizing both
data and Monte Carlo (MC) simulations that sought to
minimize effects of auto-correlations on the final dNch/dη
result. These effects can be significant when using other
centrality measures [10], resulting in enhancements (sup-
pressions) in the reconstructed midrapidity yields of up
to ∼ 30% for central (peripheral) collisions. The MC
simulations used in the study included both HIJING
[11] and AMPT [12] event generators coupled to a full
GEANT [13] simulation of the PHOBOS detector.

Four additional centrality measures, discussed in Ref.
[10], were created in order to study the detailed effects
of auto-correlation biases. Ratios of the reconstructed
dNch/dη distributions obtained from the five centrality
measures for data and, independently, for the MC simula-
tions were found to agree, giving confidence in the entire
methodology. This information, together with knowledge
of the unbiased MC simulated “truth” distributions, pro-
vided a clear choice of the centrality measure based on
the Ring detectors as that which yielded the least bias
on the measurement. It is important to note that this
study only provided guidance with respect to the choice
of ERing for the experimental centrality measure, and the
final experimental dNch/dη results do not rely in any way

on the detailed shape of the dNch/dη distributions from
the MC simulations.

The multiplicity signals of ERing were divided into five
centrality bins, where each bin contained 20% of the
total cross section. For this to be done correctly, the
trigger and vertexing efficiency had to be determined for
each bin. Knowledge of the efficiency as a function of
multiplicity allowed for the correct centrality bin deter-
mination in data as well as the extraction of the corre-
sponding efficiency-averaged number of participants. A
comparison of the data and the MC simulations yielded
an overall efficiency of ∼ 83%.

Results of the Glauber calculations implemented in the
MC were used to estimate the average total number of
nucleon participants, 〈Npart〉, the number of participants
in the incident gold, 〈NAu

part〉, and the deuteron, 〈Nd
part〉,

nuclei, as well as the number of binary collisions, 〈Ncoll〉,
for each centrality bin (see Table I).

The details of the analysis leading to the measurements
of dNch/dη can be found in Ref. [14]. The measured
dNch/dη was corrected for particles which were absorbed
or produced in the surrounding material and for feed-
down products from weak decays of neutral strange par-
ticles. Uncertainties in dNch/dη associated with these
corrections range from 6% in the Octagon up to 28% in
the Rings. These uncertainties dominate the systematic
errors.

Figure 1 shows the pseudorapidity distributions
of primary charged particles for d + Au collisions
at

√
s

NN
= 200 GeV in five centrality bins and for

minimum-bias events. A detailed discussion of our
minimum-bias distribution can be found in Ref. [10]. As
a function of collision centrality, the integrated charged
particle multiplicity in the measured region (|η| ≤ 5.4)
and the estimated total charged particle multiplicity
extrapolated to the unmeasured region using guidance
from the shifted p+nucleus data (see Fig. 2) are pre-
sented in Table I. The centrality bins 0-20% and 80-
100% correspond to the most central and the most pe-
ripheral collisions, respectively. The pseudorapidity is
measured in the nucleon-nucleon center-of-mass frame; a
negative pseudorapidity corresponds to the gold nucleus
direction. For the most central collisions, the mean η
of the distribution is found to be negative, reflecting
the net longitudinal momentum of the participants in
the laboratory (NN) frame. For more peripheral col-
lisions, the mean η tends to zero as the distribution
becomes more symmetric. For measurements of d+Au in
the nucleon-nucleon center-of-mass system the Jacobian
between dNch/dy and dNch/dη naturally produces the
“double-hump” structure in dNch/dη even if there is no
structure in dNch/dy.

Now, we compare our d + Au results with p + A data
obtained at lower energy, and discuss the energy and
centrality dependence of the data. Figure 2 compares
dNch/dη distributions of d + Au to p + Emulsion (Em)
collisions at five energies [15, 16], in the effective rest
frame of both the projectile “beam” (a) and target (b).
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FIG. 1: Measured pseudorapidity distributions of charged
particles from d + Au collisions at

√
s

NN
= 200 GeV as a

function of collision centrality. Shaded bands represent 90%
confidence level systematic errors and the statistical errors are
negligible. The minimum-bias distribution is shown as open
diamonds [10].

in the primary event trigger and in the offline event
selection.

The centrality determination was based on the ob-
served total energy deposited in the Ring counters, ERing,
which is proportional to the number of charged particles
hitting these detectors. The choice of this centrality
measure was based on extensive studies utilizing both
data and Monte Carlo (MC) simulations that sought to
minimize effects of auto-correlations on the final dNch/dη
result. These effects can be significant when using other
centrality measures [10], resulting in enhancements (sup-
pressions) in the reconstructed midrapidity yields of up
to ∼ 30% for central (peripheral) collisions. The MC
simulations used in the study included both HIJING
[11] and AMPT [12] event generators coupled to a full
GEANT [13] simulation of the PHOBOS detector.

Four additional centrality measures, discussed in Ref.
[10], were created in order to study the detailed effects
of auto-correlation biases. Ratios of the reconstructed
dNch/dη distributions obtained from the five centrality
measures for data and, independently, for the MC simula-
tions were found to agree, giving confidence in the entire
methodology. This information, together with knowledge
of the unbiased MC simulated “truth” distributions, pro-
vided a clear choice of the centrality measure based on
the Ring detectors as that which yielded the least bias
on the measurement. It is important to note that this
study only provided guidance with respect to the choice
of ERing for the experimental centrality measure, and the
final experimental dNch/dη results do not rely in any way

on the detailed shape of the dNch/dη distributions from
the MC simulations.

The multiplicity signals of ERing were divided into five
centrality bins, where each bin contained 20% of the
total cross section. For this to be done correctly, the
trigger and vertexing efficiency had to be determined for
each bin. Knowledge of the efficiency as a function of
multiplicity allowed for the correct centrality bin deter-
mination in data as well as the extraction of the corre-
sponding efficiency-averaged number of participants. A
comparison of the data and the MC simulations yielded
an overall efficiency of ∼ 83%.

Results of the Glauber calculations implemented in the
MC were used to estimate the average total number of
nucleon participants, 〈Npart〉, the number of participants
in the incident gold, 〈NAu

part〉, and the deuteron, 〈Nd
part〉,

nuclei, as well as the number of binary collisions, 〈Ncoll〉,
for each centrality bin (see Table I).

The details of the analysis leading to the measurements
of dNch/dη can be found in Ref. [14]. The measured
dNch/dη was corrected for particles which were absorbed
or produced in the surrounding material and for feed-
down products from weak decays of neutral strange par-
ticles. Uncertainties in dNch/dη associated with these
corrections range from 6% in the Octagon up to 28% in
the Rings. These uncertainties dominate the systematic
errors.

Figure 1 shows the pseudorapidity distributions
of primary charged particles for d + Au collisions
at

√
s

NN
= 200 GeV in five centrality bins and for

minimum-bias events. A detailed discussion of our
minimum-bias distribution can be found in Ref. [10]. As
a function of collision centrality, the integrated charged
particle multiplicity in the measured region (|η| ≤ 5.4)
and the estimated total charged particle multiplicity
extrapolated to the unmeasured region using guidance
from the shifted p+nucleus data (see Fig. 2) are pre-
sented in Table I. The centrality bins 0-20% and 80-
100% correspond to the most central and the most pe-
ripheral collisions, respectively. The pseudorapidity is
measured in the nucleon-nucleon center-of-mass frame; a
negative pseudorapidity corresponds to the gold nucleus
direction. For the most central collisions, the mean η
of the distribution is found to be negative, reflecting
the net longitudinal momentum of the participants in
the laboratory (NN) frame. For more peripheral col-
lisions, the mean η tends to zero as the distribution
becomes more symmetric. For measurements of d+Au in
the nucleon-nucleon center-of-mass system the Jacobian
between dNch/dy and dNch/dη naturally produces the
“double-hump” structure in dNch/dη even if there is no
structure in dNch/dy.

Now, we compare our d + Au results with p + A data
obtained at lower energy, and discuss the energy and
centrality dependence of the data. Figure 2 compares
dNch/dη distributions of d + Au to p + Emulsion (Em)
collisions at five energies [15, 16], in the effective rest
frame of both the projectile “beam” (a) and target (b).
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FIG. 1: Measured pseudorapidity distributions of charged
particles from d + Au collisions at

√
s

NN
= 200 GeV as a

function of collision centrality. Shaded bands represent 90%
confidence level systematic errors and the statistical errors are
negligible. The minimum-bias distribution is shown as open
diamonds [10].

in the primary event trigger and in the offline event
selection.

The centrality determination was based on the ob-
served total energy deposited in the Ring counters, ERing,
which is proportional to the number of charged particles
hitting these detectors. The choice of this centrality
measure was based on extensive studies utilizing both
data and Monte Carlo (MC) simulations that sought to
minimize effects of auto-correlations on the final dNch/dη
result. These effects can be significant when using other
centrality measures [10], resulting in enhancements (sup-
pressions) in the reconstructed midrapidity yields of up
to ∼ 30% for central (peripheral) collisions. The MC
simulations used in the study included both HIJING
[11] and AMPT [12] event generators coupled to a full
GEANT [13] simulation of the PHOBOS detector.

Four additional centrality measures, discussed in Ref.
[10], were created in order to study the detailed effects
of auto-correlation biases. Ratios of the reconstructed
dNch/dη distributions obtained from the five centrality
measures for data and, independently, for the MC simula-
tions were found to agree, giving confidence in the entire
methodology. This information, together with knowledge
of the unbiased MC simulated “truth” distributions, pro-
vided a clear choice of the centrality measure based on
the Ring detectors as that which yielded the least bias
on the measurement. It is important to note that this
study only provided guidance with respect to the choice
of ERing for the experimental centrality measure, and the
final experimental dNch/dη results do not rely in any way

on the detailed shape of the dNch/dη distributions from
the MC simulations.

The multiplicity signals of ERing were divided into five
centrality bins, where each bin contained 20% of the
total cross section. For this to be done correctly, the
trigger and vertexing efficiency had to be determined for
each bin. Knowledge of the efficiency as a function of
multiplicity allowed for the correct centrality bin deter-
mination in data as well as the extraction of the corre-
sponding efficiency-averaged number of participants. A
comparison of the data and the MC simulations yielded
an overall efficiency of ∼ 83%.

Results of the Glauber calculations implemented in the
MC were used to estimate the average total number of
nucleon participants, 〈Npart〉, the number of participants
in the incident gold, 〈NAu

part〉, and the deuteron, 〈Nd
part〉,

nuclei, as well as the number of binary collisions, 〈Ncoll〉,
for each centrality bin (see Table I).

The details of the analysis leading to the measurements
of dNch/dη can be found in Ref. [14]. The measured
dNch/dη was corrected for particles which were absorbed
or produced in the surrounding material and for feed-
down products from weak decays of neutral strange par-
ticles. Uncertainties in dNch/dη associated with these
corrections range from 6% in the Octagon up to 28% in
the Rings. These uncertainties dominate the systematic
errors.

Figure 1 shows the pseudorapidity distributions
of primary charged particles for d + Au collisions
at

√
s

NN
= 200 GeV in five centrality bins and for

minimum-bias events. A detailed discussion of our
minimum-bias distribution can be found in Ref. [10]. As
a function of collision centrality, the integrated charged
particle multiplicity in the measured region (|η| ≤ 5.4)
and the estimated total charged particle multiplicity
extrapolated to the unmeasured region using guidance
from the shifted p+nucleus data (see Fig. 2) are pre-
sented in Table I. The centrality bins 0-20% and 80-
100% correspond to the most central and the most pe-
ripheral collisions, respectively. The pseudorapidity is
measured in the nucleon-nucleon center-of-mass frame; a
negative pseudorapidity corresponds to the gold nucleus
direction. For the most central collisions, the mean η
of the distribution is found to be negative, reflecting
the net longitudinal momentum of the participants in
the laboratory (NN) frame. For more peripheral col-
lisions, the mean η tends to zero as the distribution
becomes more symmetric. For measurements of d+Au in
the nucleon-nucleon center-of-mass system the Jacobian
between dNch/dy and dNch/dη naturally produces the
“double-hump” structure in dNch/dη even if there is no
structure in dNch/dy.

Now, we compare our d + Au results with p + A data
obtained at lower energy, and discuss the energy and
centrality dependence of the data. Figure 2 compares
dNch/dη distributions of d + Au to p + Emulsion (Em)
collisions at five energies [15, 16], in the effective rest
frame of both the projectile “beam” (a) and target (b).
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FIG. 1: Measured pseudorapidity distributions of charged
particles from d + Au collisions at

√
s

NN
= 200 GeV as a

function of collision centrality. Shaded bands represent 90%
confidence level systematic errors and the statistical errors are
negligible. The minimum-bias distribution is shown as open
diamonds [10].

in the primary event trigger and in the offline event
selection.

The centrality determination was based on the ob-
served total energy deposited in the Ring counters, ERing,
which is proportional to the number of charged particles
hitting these detectors. The choice of this centrality
measure was based on extensive studies utilizing both
data and Monte Carlo (MC) simulations that sought to
minimize effects of auto-correlations on the final dNch/dη
result. These effects can be significant when using other
centrality measures [10], resulting in enhancements (sup-
pressions) in the reconstructed midrapidity yields of up
to ∼ 30% for central (peripheral) collisions. The MC
simulations used in the study included both HIJING
[11] and AMPT [12] event generators coupled to a full
GEANT [13] simulation of the PHOBOS detector.

Four additional centrality measures, discussed in Ref.
[10], were created in order to study the detailed effects
of auto-correlation biases. Ratios of the reconstructed
dNch/dη distributions obtained from the five centrality
measures for data and, independently, for the MC simula-
tions were found to agree, giving confidence in the entire
methodology. This information, together with knowledge
of the unbiased MC simulated “truth” distributions, pro-
vided a clear choice of the centrality measure based on
the Ring detectors as that which yielded the least bias
on the measurement. It is important to note that this
study only provided guidance with respect to the choice
of ERing for the experimental centrality measure, and the
final experimental dNch/dη results do not rely in any way

on the detailed shape of the dNch/dη distributions from
the MC simulations.

The multiplicity signals of ERing were divided into five
centrality bins, where each bin contained 20% of the
total cross section. For this to be done correctly, the
trigger and vertexing efficiency had to be determined for
each bin. Knowledge of the efficiency as a function of
multiplicity allowed for the correct centrality bin deter-
mination in data as well as the extraction of the corre-
sponding efficiency-averaged number of participants. A
comparison of the data and the MC simulations yielded
an overall efficiency of ∼ 83%.

Results of the Glauber calculations implemented in the
MC were used to estimate the average total number of
nucleon participants, 〈Npart〉, the number of participants
in the incident gold, 〈NAu

part〉, and the deuteron, 〈Nd
part〉,

nuclei, as well as the number of binary collisions, 〈Ncoll〉,
for each centrality bin (see Table I).

The details of the analysis leading to the measurements
of dNch/dη can be found in Ref. [14]. The measured
dNch/dη was corrected for particles which were absorbed
or produced in the surrounding material and for feed-
down products from weak decays of neutral strange par-
ticles. Uncertainties in dNch/dη associated with these
corrections range from 6% in the Octagon up to 28% in
the Rings. These uncertainties dominate the systematic
errors.

Figure 1 shows the pseudorapidity distributions
of primary charged particles for d + Au collisions
at

√
s

NN
= 200 GeV in five centrality bins and for

minimum-bias events. A detailed discussion of our
minimum-bias distribution can be found in Ref. [10]. As
a function of collision centrality, the integrated charged
particle multiplicity in the measured region (|η| ≤ 5.4)
and the estimated total charged particle multiplicity
extrapolated to the unmeasured region using guidance
from the shifted p+nucleus data (see Fig. 2) are pre-
sented in Table I. The centrality bins 0-20% and 80-
100% correspond to the most central and the most pe-
ripheral collisions, respectively. The pseudorapidity is
measured in the nucleon-nucleon center-of-mass frame; a
negative pseudorapidity corresponds to the gold nucleus
direction. For the most central collisions, the mean η
of the distribution is found to be negative, reflecting
the net longitudinal momentum of the participants in
the laboratory (NN) frame. For more peripheral col-
lisions, the mean η tends to zero as the distribution
becomes more symmetric. For measurements of d+Au in
the nucleon-nucleon center-of-mass system the Jacobian
between dNch/dy and dNch/dη naturally produces the
“double-hump” structure in dNch/dη even if there is no
structure in dNch/dy.

Now, we compare our d + Au results with p + A data
obtained at lower energy, and discuss the energy and
centrality dependence of the data. Figure 2 compares
dNch/dη distributions of d + Au to p + Emulsion (Em)
collisions at five energies [15, 16], in the effective rest
frame of both the projectile “beam” (a) and target (b).
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FIG. 1: Measured pseudorapidity distributions of charged
particles from d + Au collisions at

√
s

NN
= 200 GeV as a

function of collision centrality. Shaded bands represent 90%
confidence level systematic errors and the statistical errors are
negligible. The minimum-bias distribution is shown as open
diamonds [10].

in the primary event trigger and in the offline event
selection.

The centrality determination was based on the ob-
served total energy deposited in the Ring counters, ERing,
which is proportional to the number of charged particles
hitting these detectors. The choice of this centrality
measure was based on extensive studies utilizing both
data and Monte Carlo (MC) simulations that sought to
minimize effects of auto-correlations on the final dNch/dη
result. These effects can be significant when using other
centrality measures [10], resulting in enhancements (sup-
pressions) in the reconstructed midrapidity yields of up
to ∼ 30% for central (peripheral) collisions. The MC
simulations used in the study included both HIJING
[11] and AMPT [12] event generators coupled to a full
GEANT [13] simulation of the PHOBOS detector.

Four additional centrality measures, discussed in Ref.
[10], were created in order to study the detailed effects
of auto-correlation biases. Ratios of the reconstructed
dNch/dη distributions obtained from the five centrality
measures for data and, independently, for the MC simula-
tions were found to agree, giving confidence in the entire
methodology. This information, together with knowledge
of the unbiased MC simulated “truth” distributions, pro-
vided a clear choice of the centrality measure based on
the Ring detectors as that which yielded the least bias
on the measurement. It is important to note that this
study only provided guidance with respect to the choice
of ERing for the experimental centrality measure, and the
final experimental dNch/dη results do not rely in any way

on the detailed shape of the dNch/dη distributions from
the MC simulations.

The multiplicity signals of ERing were divided into five
centrality bins, where each bin contained 20% of the
total cross section. For this to be done correctly, the
trigger and vertexing efficiency had to be determined for
each bin. Knowledge of the efficiency as a function of
multiplicity allowed for the correct centrality bin deter-
mination in data as well as the extraction of the corre-
sponding efficiency-averaged number of participants. A
comparison of the data and the MC simulations yielded
an overall efficiency of ∼ 83%.

Results of the Glauber calculations implemented in the
MC were used to estimate the average total number of
nucleon participants, 〈Npart〉, the number of participants
in the incident gold, 〈NAu

part〉, and the deuteron, 〈Nd
part〉,

nuclei, as well as the number of binary collisions, 〈Ncoll〉,
for each centrality bin (see Table I).

The details of the analysis leading to the measurements
of dNch/dη can be found in Ref. [14]. The measured
dNch/dη was corrected for particles which were absorbed
or produced in the surrounding material and for feed-
down products from weak decays of neutral strange par-
ticles. Uncertainties in dNch/dη associated with these
corrections range from 6% in the Octagon up to 28% in
the Rings. These uncertainties dominate the systematic
errors.

Figure 1 shows the pseudorapidity distributions
of primary charged particles for d + Au collisions
at

√
s

NN
= 200 GeV in five centrality bins and for

minimum-bias events. A detailed discussion of our
minimum-bias distribution can be found in Ref. [10]. As
a function of collision centrality, the integrated charged
particle multiplicity in the measured region (|η| ≤ 5.4)
and the estimated total charged particle multiplicity
extrapolated to the unmeasured region using guidance
from the shifted p+nucleus data (see Fig. 2) are pre-
sented in Table I. The centrality bins 0-20% and 80-
100% correspond to the most central and the most pe-
ripheral collisions, respectively. The pseudorapidity is
measured in the nucleon-nucleon center-of-mass frame; a
negative pseudorapidity corresponds to the gold nucleus
direction. For the most central collisions, the mean η
of the distribution is found to be negative, reflecting
the net longitudinal momentum of the participants in
the laboratory (NN) frame. For more peripheral col-
lisions, the mean η tends to zero as the distribution
becomes more symmetric. For measurements of d+Au in
the nucleon-nucleon center-of-mass system the Jacobian
between dNch/dy and dNch/dη naturally produces the
“double-hump” structure in dNch/dη even if there is no
structure in dNch/dy.

Now, we compare our d + Au results with p + A data
obtained at lower energy, and discuss the energy and
centrality dependence of the data. Figure 2 compares
dNch/dη distributions of d + Au to p + Emulsion (Em)
collisions at five energies [15, 16], in the effective rest
frame of both the projectile “beam” (a) and target (b).
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η dependence
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large contributions from away side jet not removed, so no vN 

extraction from rapidity separated correlations...stay tuned!
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Hijing expectations?
• HIJING has no flow, no CGC

• perform the same study with HIJING as in the data
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HIJING c2 
consistent with 0, 

much smaller than 
in data
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FIG. 4. (Color online) Eccentricity (solid line) and triangularity
(dashed line) in p-Pb interactions as a function of the number of
participant nucleons.

a boost is made to the laboratory frame to get spectra around
mid-rapidity or pseudorapidity distributions.

The NN cross section at different energies can be obtained
from an interpolation of values at 200 GeV, 2.76 TeV, and
7 TeV [25,26] (σNN = 42, 62, and 71 mb, respectively) using
a formula of the form σNN ∝ a + b ln(

√
sNN ) + c ln2(

√
sNN ).

The resulting NN cross sections from Table I are used in our
Glauber model calculation. We take a Wood-Saxon profile for
the Pb nuclear density,

ρ(x, y, z) = ρ0

1 + exp
(
(
√

x2 + y2 + z2 − RA)/a
) , (2.1)

with ρ0 = 0.17 fm−3, RA = 6.55 fm, and a = 0.45 fm, and an
excluded distance for nucleons of 0.4 fm; for the deuteron we
use the Hulthen distribution [27].

Events at a given impact parameter are generated using the
GLISSANDO code for the Glauber model [27]. The distribution
of participant nucleons at different impact parameters is shown
in Fig. 1 for p-Pb interactions at 4.4 TeV. We notice that the
number of participant nucleons fluctuates strongly at a fixed
impact parameter. The number of participant nucleons can be
significantly above the average value (solid line in Fig. 1).
Defining the most central collisions as a interval in the impact
parameter is incorrect. The few percent of most central events
in terms of the number of participant nucleons (Npart > 18)
have a participant multiplicity larger than the average Npart at
zero impact parameter. The picture is very similar for d-Pb
collisions. In the experiment the centrality classes are defined
by the track multiplicity, which is closely correlated with the
number of participants in the model. In heavy-ion collisions
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FIG. 5. (Color online) Same as Fig. 4 but for d-Pb interactions.
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FIG. 6. (Color online) Contour plot s(x, y, η‖ = 0) of the initial
entropy density in a d-Pb collision with Npart = 24.

the number of participants is correlated with the impact
parameter. In p-Pb or d-Pb interactions it is preferable to define
the centrality classes for events using directly cuts in Npart.
Figures 2 and 3 show the probability density for events of a
given Npart for the two systems considered. For p-Pb events, we
use three centrality classes defined as 18 ! Npart, 11 ! Npart !
17, and 8 ! Npart ! 10, corresponding to centrality bins of
0%–4%, 4%–32%, and 32%–49%, out of all the inelastic
events (Npart " 2). The unusual numbers for the centrality
percentiles are fixed by the discrete variable Npart. For the
d-Pb interactions, we choose 27 ! Npart, 16 ! Npart ! 26, and
10 ! Npart ! 15, corresponding to centrality bins of 0%–5%,
5%–30%, and 30%–50%.

The charged particle density at central pseudorapidity can
be estimated from the multiplicity observed at a similar
energy and for a similar number of participant nucleons
measured in peripheral Pb-Pb collisions at the LHC [9],
interpolating the measured values of dN/dηPS/〈Npart/2〉
at centralities of 60%–70% and 70%–80% to the average
number of participant nucleons 〈Npart〉 corresponding to the
most central bins considered in p-Pb and d-Pb collisions.
The energy dependence of dN/ηPS is s0.11 for p-p and
s0.15 for nucleus-nucleus collisions [28]. We take s0.13 to
extrapolate from

√
sNN = 2.76 TeV. The estimated values
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FIG. 7. (Color online) Constant-temperature hypersurface
T (τ, x = 0, y, η‖ = 0) in a p-Pb interaction for the freeze-out
temperature Tf = 135 MeV (dashed line) and for 160 MeV (solid
line).
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a boost is made to the laboratory frame to get spectra around
mid-rapidity or pseudorapidity distributions.

The NN cross section at different energies can be obtained
from an interpolation of values at 200 GeV, 2.76 TeV, and
7 TeV [25,26] (σNN = 42, 62, and 71 mb, respectively) using
a formula of the form σNN ∝ a + b ln(

√
sNN ) + c ln2(

√
sNN ).

The resulting NN cross sections from Table I are used in our
Glauber model calculation. We take a Wood-Saxon profile for
the Pb nuclear density,

ρ(x, y, z) = ρ0

1 + exp
(
(
√

x2 + y2 + z2 − RA)/a
) , (2.1)

with ρ0 = 0.17 fm−3, RA = 6.55 fm, and a = 0.45 fm, and an
excluded distance for nucleons of 0.4 fm; for the deuteron we
use the Hulthen distribution [27].

Events at a given impact parameter are generated using the
GLISSANDO code for the Glauber model [27]. The distribution
of participant nucleons at different impact parameters is shown
in Fig. 1 for p-Pb interactions at 4.4 TeV. We notice that the
number of participant nucleons fluctuates strongly at a fixed
impact parameter. The number of participant nucleons can be
significantly above the average value (solid line in Fig. 1).
Defining the most central collisions as a interval in the impact
parameter is incorrect. The few percent of most central events
in terms of the number of participant nucleons (Npart > 18)
have a participant multiplicity larger than the average Npart at
zero impact parameter. The picture is very similar for d-Pb
collisions. In the experiment the centrality classes are defined
by the track multiplicity, which is closely correlated with the
number of participants in the model. In heavy-ion collisions
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the number of participants is correlated with the impact
parameter. In p-Pb or d-Pb interactions it is preferable to define
the centrality classes for events using directly cuts in Npart.
Figures 2 and 3 show the probability density for events of a
given Npart for the two systems considered. For p-Pb events, we
use three centrality classes defined as 18 ! Npart, 11 ! Npart !
17, and 8 ! Npart ! 10, corresponding to centrality bins of
0%–4%, 4%–32%, and 32%–49%, out of all the inelastic
events (Npart " 2). The unusual numbers for the centrality
percentiles are fixed by the discrete variable Npart. For the
d-Pb interactions, we choose 27 ! Npart, 16 ! Npart ! 26, and
10 ! Npart ! 15, corresponding to centrality bins of 0%–5%,
5%–30%, and 30%–50%.

The charged particle density at central pseudorapidity can
be estimated from the multiplicity observed at a similar
energy and for a similar number of participant nucleons
measured in peripheral Pb-Pb collisions at the LHC [9],
interpolating the measured values of dN/dηPS/〈Npart/2〉
at centralities of 60%–70% and 70%–80% to the average
number of participant nucleons 〈Npart〉 corresponding to the
most central bins considered in p-Pb and d-Pb collisions.
The energy dependence of dN/ηPS is s0.11 for p-p and
s0.15 for nucleus-nucleus collisions [28]. We take s0.13 to
extrapolate from

√
sNN = 2.76 TeV. The estimated values
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T (τ, x = 0, y, η‖ = 0) in a p-Pb interaction for the freeze-out
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FIG. 4. (Color online) Eccentricity (solid line) and triangularity
(dashed line) in p-Pb interactions as a function of the number of
participant nucleons.

a boost is made to the laboratory frame to get spectra around
mid-rapidity or pseudorapidity distributions.

The NN cross section at different energies can be obtained
from an interpolation of values at 200 GeV, 2.76 TeV, and
7 TeV [25,26] (σNN = 42, 62, and 71 mb, respectively) using
a formula of the form σNN ∝ a + b ln(

√
sNN ) + c ln2(

√
sNN ).

The resulting NN cross sections from Table I are used in our
Glauber model calculation. We take a Wood-Saxon profile for
the Pb nuclear density,

ρ(x, y, z) = ρ0

1 + exp
(
(
√

x2 + y2 + z2 − RA)/a
) , (2.1)

with ρ0 = 0.17 fm−3, RA = 6.55 fm, and a = 0.45 fm, and an
excluded distance for nucleons of 0.4 fm; for the deuteron we
use the Hulthen distribution [27].

Events at a given impact parameter are generated using the
GLISSANDO code for the Glauber model [27]. The distribution
of participant nucleons at different impact parameters is shown
in Fig. 1 for p-Pb interactions at 4.4 TeV. We notice that the
number of participant nucleons fluctuates strongly at a fixed
impact parameter. The number of participant nucleons can be
significantly above the average value (solid line in Fig. 1).
Defining the most central collisions as a interval in the impact
parameter is incorrect. The few percent of most central events
in terms of the number of participant nucleons (Npart > 18)
have a participant multiplicity larger than the average Npart at
zero impact parameter. The picture is very similar for d-Pb
collisions. In the experiment the centrality classes are defined
by the track multiplicity, which is closely correlated with the
number of participants in the model. In heavy-ion collisions
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the number of participants is correlated with the impact
parameter. In p-Pb or d-Pb interactions it is preferable to define
the centrality classes for events using directly cuts in Npart.
Figures 2 and 3 show the probability density for events of a
given Npart for the two systems considered. For p-Pb events, we
use three centrality classes defined as 18 ! Npart, 11 ! Npart !
17, and 8 ! Npart ! 10, corresponding to centrality bins of
0%–4%, 4%–32%, and 32%–49%, out of all the inelastic
events (Npart " 2). The unusual numbers for the centrality
percentiles are fixed by the discrete variable Npart. For the
d-Pb interactions, we choose 27 ! Npart, 16 ! Npart ! 26, and
10 ! Npart ! 15, corresponding to centrality bins of 0%–5%,
5%–30%, and 30%–50%.

The charged particle density at central pseudorapidity can
be estimated from the multiplicity observed at a similar
energy and for a similar number of participant nucleons
measured in peripheral Pb-Pb collisions at the LHC [9],
interpolating the measured values of dN/dηPS/〈Npart/2〉
at centralities of 60%–70% and 70%–80% to the average
number of participant nucleons 〈Npart〉 corresponding to the
most central bins considered in p-Pb and d-Pb collisions.
The energy dependence of dN/ηPS is s0.11 for p-p and
s0.15 for nucleus-nucleus collisions [28]. We take s0.13 to
extrapolate from

√
sNN = 2.76 TeV. The estimated values
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T (τ, x = 0, y, η‖ = 0) in a p-Pb interaction for the freeze-out
temperature Tf = 135 MeV (dashed line) and for 160 MeV (solid
line).
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The NN cross section at different energies can be obtained
from an interpolation of values at 200 GeV, 2.76 TeV, and
7 TeV [25,26] (σNN = 42, 62, and 71 mb, respectively) using
a formula of the form σNN ∝ a + b ln(

√
sNN ) + c ln2(

√
sNN ).

The resulting NN cross sections from Table I are used in our
Glauber model calculation. We take a Wood-Saxon profile for
the Pb nuclear density,

ρ(x, y, z) = ρ0

1 + exp
(
(
√

x2 + y2 + z2 − RA)/a
) , (2.1)

with ρ0 = 0.17 fm−3, RA = 6.55 fm, and a = 0.45 fm, and an
excluded distance for nucleons of 0.4 fm; for the deuteron we
use the Hulthen distribution [27].

Events at a given impact parameter are generated using the
GLISSANDO code for the Glauber model [27]. The distribution
of participant nucleons at different impact parameters is shown
in Fig. 1 for p-Pb interactions at 4.4 TeV. We notice that the
number of participant nucleons fluctuates strongly at a fixed
impact parameter. The number of participant nucleons can be
significantly above the average value (solid line in Fig. 1).
Defining the most central collisions as a interval in the impact
parameter is incorrect. The few percent of most central events
in terms of the number of participant nucleons (Npart > 18)
have a participant multiplicity larger than the average Npart at
zero impact parameter. The picture is very similar for d-Pb
collisions. In the experiment the centrality classes are defined
by the track multiplicity, which is closely correlated with the
number of participants in the model. In heavy-ion collisions
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the number of participants is correlated with the impact
parameter. In p-Pb or d-Pb interactions it is preferable to define
the centrality classes for events using directly cuts in Npart.
Figures 2 and 3 show the probability density for events of a
given Npart for the two systems considered. For p-Pb events, we
use three centrality classes defined as 18 ! Npart, 11 ! Npart !
17, and 8 ! Npart ! 10, corresponding to centrality bins of
0%–4%, 4%–32%, and 32%–49%, out of all the inelastic
events (Npart " 2). The unusual numbers for the centrality
percentiles are fixed by the discrete variable Npart. For the
d-Pb interactions, we choose 27 ! Npart, 16 ! Npart ! 26, and
10 ! Npart ! 15, corresponding to centrality bins of 0%–5%,
5%–30%, and 30%–50%.

The charged particle density at central pseudorapidity can
be estimated from the multiplicity observed at a similar
energy and for a similar number of participant nucleons
measured in peripheral Pb-Pb collisions at the LHC [9],
interpolating the measured values of dN/dηPS/〈Npart/2〉
at centralities of 60%–70% and 70%–80% to the average
number of participant nucleons 〈Npart〉 corresponding to the
most central bins considered in p-Pb and d-Pb collisions.
The energy dependence of dN/ηPS is s0.11 for p-p and
s0.15 for nucleus-nucleus collisions [28]. We take s0.13 to
extrapolate from

√
sNN = 2.76 TeV. The estimated values
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T (τ, x = 0, y, η‖ = 0) in a p-Pb interaction for the freeze-out
temperature Tf = 135 MeV (dashed line) and for 160 MeV (solid
line).

014911-3

Bozek PRC85 014911

d+A central collisions have much larger ε2 than p+A



A. M. Sickles

comparison to hydro calculations

22

qualitative agreement with hydro calculations with η/s ≤ 0.08

n.b. Bzdak et al calculations at fixed Npart
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• v2 naturally enhanced in dAu

• little dependence on initial state 
description--Glauber vs IP-Glasma
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7

for d+Au collisions in Figs. 10 and 11. We see the same
trend as observed for the integrated vn.
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Finally, we can qualitatively compare our results here
to the results of the LHC and RHIC experiments on
proton-nucleus and deuteron-nucleus collisions. The
trend of v2 as a function of centrality observed in p+Pb
collisions appears to be different from that of the AL-
ICE data [3] on proton-lead collisions at

√
s = 5.02

TeV/nucleon. However, the error bars in the pub-
lished data are too large to draw a definitive conclu-
sion at present. The ATLAS collaboration has also pre-
sented [31] a quantity called v2(PC), which is defined
similarly to the ALICE v2 and has the same trend as the
ALICE results. However, the collaboration also presents
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results for v2{4}, from four particle correlations, which
appears to have the opposite trend with centrality rela-
tive to v2(PC). The computations of [30] appear to be
in agreement with this v2{4} quantity for the centralities
compared. However, as can be seen in Fig. 6, the IP-
Glasma results are approximately a factor of two lower
for the Npart that correspond to the same centrality se-
lection. Note further that the IP-Glasma results are for
η/s = 0.08 and will be smaller for the η/s = 0.2 that
gives a good description of v2 in A+A collisions at the
LHC. We also note that the RHIC d+Au results on the
ridge are reproduced by the MC Glauber 1 model. The
differences between this model and the IP-Glasma model
(for integrated v2 values) in these collisions can be seen
in Fig. 7. More quantitative studies and additional data
will clearly help clarify the role of hydrodynamics in the
interpretation of the RHIC and LHC results on the ridge
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MC-Glauber 1 model and in the bottom plot, the corre-
sponding IP-Glasma model results. These are seen to be
quite different. In the latter, it is observed that the peaks
in the contour are closely associated with the centers of
the deuteron nucleon positions and vary strongly depend-
ing on the number of gold nucleon positions in their im-
mediate vicinity. In the former MC-Glauber case, signif-
icant energy densities are seen even in regions where nu-
cleons of the gold nucleus are widely separated in trans-
verse spatial position from the deuteron nucleons. Nucle-
ons that have been marginally grazed produce as much
energy density as those that have suffered a head on colli-
sion. In the IP-Glasma model, because the mean distance
in the projection onto the transverse plane between the
two nucleons in a deuteron is 2.52 fm, the majority of

events have widely separated interaction regions. This is
quite different in the MC-Glauber model.

Whether eccentricity is a relevant measure in deuteron-
gold collisions depends sensitively on the radial separa-
tion of the regions where energy density is deposited. If
they are too far apart for hydrodynamic flow to bring
them into contact over the system’s lifetime, the eccen-
tricity will be a poor measure of flow. If they are close
enough at the same eccentricity to influence subsequent
flow, the eccentricity will track flow better. Thus eccen-
tricity in deuteron-gold collisions, in contrast to nucleus-
nucleus collisions, is at best a qualitative measure of
anisotropic flow.
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FIG. 5. (Color online) Initial energy density distribution (ar-
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plane in a d+Au collision in the MC-Glauber model (upper
panel) and the IP-Glasma approach (lower panel). The nu-
cleon positions (open circles for the deuteron, solid circles for
gold) are exactly the same in the two cases.
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for d+Au collisions in Figs. 10 and 11. We see the same
trend as observed for the integrated vn.
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Finally, we can qualitatively compare our results here
to the results of the LHC and RHIC experiments on
proton-nucleus and deuteron-nucleus collisions. The
trend of v2 as a function of centrality observed in p+Pb
collisions appears to be different from that of the AL-
ICE data [3] on proton-lead collisions at

√
s = 5.02

TeV/nucleon. However, the error bars in the pub-
lished data are too large to draw a definitive conclu-
sion at present. The ATLAS collaboration has also pre-
sented [31] a quantity called v2(PC), which is defined
similarly to the ALICE v2 and has the same trend as the
ALICE results. However, the collaboration also presents
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results for v2{4}, from four particle correlations, which
appears to have the opposite trend with centrality rela-
tive to v2(PC). The computations of [30] appear to be
in agreement with this v2{4} quantity for the centralities
compared. However, as can be seen in Fig. 6, the IP-
Glasma results are approximately a factor of two lower
for the Npart that correspond to the same centrality se-
lection. Note further that the IP-Glasma results are for
η/s = 0.08 and will be smaller for the η/s = 0.2 that
gives a good description of v2 in A+A collisions at the
LHC. We also note that the RHIC d+Au results on the
ridge are reproduced by the MC Glauber 1 model. The
differences between this model and the IP-Glasma model
(for integrated v2 values) in these collisions can be seen
in Fig. 7. More quantitative studies and additional data
will clearly help clarify the role of hydrodynamics in the
interpretation of the RHIC and LHC results on the ridge
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trend as observed for the integrated vn.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  5  10  15  20  25

〈v
n2 〉

1/
2

Npart

p+p 7 TeV:
IP-Glasma n=2
IP-Glasma n=3

 p+Pb 5.02 TeV:
 IP-Glasma n=2
 MC-Glauber 1 n=2
 IP-Glasma n=3
 MC-Glauber 1 n=3

FIG. 6. (Color online) Integrated 〈v22〉
1/2 and 〈v23〉

1/2 for
charged hadrons in p+Pb collisions at different Npart in the
MC-Glauber 1 and IP-Glasma model for pT > 0.5GeV and
η/s = 0.08. v2 decreases with Npart. Results for p+p colli-
sions are for b = 0 fm.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  5  10  15  20  25  30  35  40

〈v
n2 〉

1/
2

Npart

 d+Au 200 GeV:
 IP-Glasma n=2
 MC-Glauber 1 n=2
 IP-Glasma n=3
 MC-Glauber 1 n=3

FIG. 7. (Color online) Integrated 〈v22〉
1/2 and 〈v23〉

1/2 for
charged hadrons in d+Au collisions at different Npart in the
MC-Glauber 1 and IP-Glasma model for pT > 0.5GeV and
η/s = 0.08. v2 increases with Npart.

Finally, we can qualitatively compare our results here
to the results of the LHC and RHIC experiments on
proton-nucleus and deuteron-nucleus collisions. The
trend of v2 as a function of centrality observed in p+Pb
collisions appears to be different from that of the AL-
ICE data [3] on proton-lead collisions at

√
s = 5.02

TeV/nucleon. However, the error bars in the pub-
lished data are too large to draw a definitive conclu-
sion at present. The ATLAS collaboration has also pre-
sented [31] a quantity called v2(PC), which is defined
similarly to the ALICE v2 and has the same trend as the
ALICE results. However, the collaboration also presents
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results for v2{4}, from four particle correlations, which
appears to have the opposite trend with centrality rela-
tive to v2(PC). The computations of [30] appear to be
in agreement with this v2{4} quantity for the centralities
compared. However, as can be seen in Fig. 6, the IP-
Glasma results are approximately a factor of two lower
for the Npart that correspond to the same centrality se-
lection. Note further that the IP-Glasma results are for
η/s = 0.08 and will be smaller for the η/s = 0.2 that
gives a good description of v2 in A+A collisions at the
LHC. We also note that the RHIC d+Au results on the
ridge are reproduced by the MC Glauber 1 model. The
differences between this model and the IP-Glasma model
(for integrated v2 values) in these collisions can be seen
in Fig. 7. More quantitative studies and additional data
will clearly help clarify the role of hydrodynamics in the
interpretation of the RHIC and LHC results on the ridge

• d+Au:

• larger v2

• smaller dependence on initial state description
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no evidence for significant v3, consistent with hydro 
expectations
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no significant c3 in Fourier decomposition 
of  mid-forward correlations
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FIG. 1. Anatomy of di-hadron correlations. The glasma graph on the left illustrates its its schematic
contribution to the double inclusive cross-section (dashed orange curve). On the right is the back-

to-back graph and the shape of its yield (dashed blue curve). The grey blobs denote emissions all
the way from beam rapidities to those of the triggered gluons. The solid black curve represents
the sum of contributions from glasma and back-to-back graphs. The shaded region represents the

Associated Yield (AY) calculated using the zero-yield-at-minimum (ZYAM) procedure. Figure
from ref. [9].

The paper is organized as follows. In the next section, we will present the formulae used
in the computation of Glasma and BFKL graphs. Since all details have been discussed pre-
viously in [9] and references therein, we will reintroduce them briefly only for completeness,
our focus here being the understanding of the systematics of the new CMS p+Pb data. In
section 3, we will discuss in detail results in the CGC, compare these to the data, and make
predictions for as yet unpublished data. In the final section, we will summarize our con-
clusions, discuss alternative interpretations and further refinements and tests of the CGC
framework.

II. GLASMA AND BFKL CONTRIBUTIONS IN THE CGC EFT

The collimated correlated two-gluon production Glasma and BFKL graphs are illustrated
in Fig. (1). The collimated contributions from all the Glasma graphs can be compactly
written as

d2N corr.
Glasma

d2pTd2qTdypdyq
=

αS(pT )αS(qT )

4π10

N2
C

(N2
C − 1)3 ζ

S⊥

p2
Tq

2
T

Kglasma

×

[

∫

kT

(D1 +D2) +
∑

j=±

(

A1(pT , jqT ) +
1

2
A2(pT , jqT )

)

]

. (1)

3

Dusling & Venugopalan 1211.3701, 1302.7018 & private comm.

RHIC Predictions

significant signal expected at RHIC!
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The paper is organized as follows. In the next section, we will present the formulae used
in the computation of Glasma and BFKL graphs. Since all details have been discussed pre-
viously in [9] and references therein, we will reintroduce them briefly only for completeness,
our focus here being the understanding of the systematics of the new CMS p+Pb data. In
section 3, we will discuss in detail results in the CGC, compare these to the data, and make
predictions for as yet unpublished data. In the final section, we will summarize our con-
clusions, discuss alternative interpretations and further refinements and tests of the CGC
framework.

II. GLASMA AND BFKL CONTRIBUTIONS IN THE CGC EFT

The collimated correlated two-gluon production Glasma and BFKL graphs are illustrated
in Fig. (1). The collimated contributions from all the Glasma graphs can be compactly
written as
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Dusling & Venugopalan 1211.3701, 1302.7018 & private comm.

RHIC Predictions

significant signal expected at RHIC!

• smaller yield expected at RHIC compared to LHC

• Fourier coefficients aren’t calculated for this model--working to compare 
to our data
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A. M. Sickles

v2/ε2  vs multiplicity 

• Glauber MC & pointlike centers to calculate ε2

• → approximate scaling of  v2/ε2 with dN/dη

28
 a common relationship between geometry and v2?
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FIG. 23. (Color online) The CMS integrated v2 values from
the event-plane method divided by the participant eccentricity as a
function of Npart with |η| < 0.8 and 0 < pT < 3 GeV/c. These results
are compared with those from PHOBOS [34] for different nuclear
species and collision energies. The PHOBOS v2 values are divided
by the cumulant eccentricity ε{2} (see text). The error bars give the
statistical and systematic uncertainties in the v2 measurements added
in quadrature. The dashed lines represent the systematic uncertainties
in the eccentricity determination.

deviations from this behavior are expected in peripheral
collisions, in which the system freezes out before the elliptic
flow fully builds up and saturates [32]. A weak centrality
and beam-energy dependence is expected through variations
in the equation of state. In addition, the system is also
affected by viscosity, in both the sQGP and the hadronic
stages [22,68,83,84] of its evolution. Therefore, the centrality
and

√
sNN dependence of v2/ε can be used to extract the

ratio of the shear viscosity to the entropy density of the
system.

In Fig. 23, the integrated v2 obtained from the event-plane
method is divided by the eccentricity of the collisions and
plotted as a function of Npart, which is derived from the
centrality of the event. The result is compared to lower-energy
AuAu and CuCu measurements from the PHOBOS experiment
[34]. For the CMS measurement, the value of v2 is divided
by the participant eccentricity εpart because the event-plane
resolution factor shown in Fig. 4 is greater than 0.6 for all but
the most central and most peripheral event selections in our
analysis. It has been argued [34,37] that for lower-resolution
parameters, the event-plane method measures the rms of the
azimuthal anisotropy, rather than the mean, and therefore,
the relevant eccentricity parameter in this case should be the

second-order cumulant eccentricity ε{2} ≡
√

〈ε2
part〉. Thus, the

comparison with the PHOBOS v2 results, which were obtained
with low event-plane resolution, is done by implementing this
scaling using the data from Ref. [34]. An approximately 25%
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FIG. 24. (Color online) Eccentricity-scaled v2 as a function of the
transverse charged-particle density from CMS and PHOBOS [34].
The error bars include both statistical and systematic uncertainties
in v2. The dashed lines represent the systematic uncertainties in the
eccentricity determination.

increase in the integrated v2 scaled by the eccentricity between
RHIC and LHC energies is observed and with a similar Npart
dependence.

It was previously observed [34,79,85] that the v2/ε values
obtained in different collision systems and varying beam en-
ergies scale with the charged-particle rapidity density per unit
transverse overlap area (1/S)(dNch/dy), which is proportional
to the initial entropy density. In addition, it has been pointed out
[69] that in this representation the sensitivity to the modeling
of the initial conditions of the heavy-ion collisions is largely
removed, thus enabling the extraction of the shear viscosity to
the entropy density ratio from the data through the comparison
with viscous hydrodynamics calculations. With the factor of
2.1 increase in the charged-particle pseudorapidity density
per participant pair, (dNch/dη)/(Npart/2), from the highest
RHIC energy to the LHC [75,86], this scaling behavior can be
tested over a much broader range of initial entropy densities.
In Fig. 24, we compare the CMS results for v2/ε from the
event-plane method to results from the PHOBOS experiment
[34] for CuCu and AuAu collisions with

√
sNN = 62.4 and

200 GeV.
At lower energies, the scaling has been examined using

the charged-particle rapidity density dNch/dy [34,79,85].
However, because we do not identify the species of charged
particles in this analysis, we perform the comparison using
(1/S)(dNch/dη) to avoid introducing uncertainties related
to assumptions about the detailed behavior of the identified
particle transverse momentum spectra that are needed to
perform this conversion. In Fig. 24, the charged-particle
pseudorapidity density dNch/dη measured by CMS [75] is
used, and the value of the integrated v2 for the ranges

014902-21

S = 4π√σx2σy2-σxy2

CMS PRC 87 014902

pT integrated v2 data 
found to scale in heavy 
ions with 1/S dNch/dη 

over wide collision energy
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• approximate scaling with 1/S dNch/dη

• significant uncertainties due to nucleon representations in d+Au

• n.b. not directly comparable to other 1/S plots, here v2 at fixed pT!
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will allow for a better statistics measurement of the nominal physics of neutral pions and673

jets as the peripheral selection d+Au result.674

3.5.3 Unique geometry tests of bulk medium in small systems with d+Au and675

3He+Au676

The long-range rapidity correlations observed at the LHC in high multiplicity p+p and677

p+Pb collisions and most recently in RHIC d+Au collisions have sparked a great deal678

of physics discussion. Are these correlations the result of glasma diagrams within a679

Color Glass Condensate picture? Are they the result of hydrodynamic expansion or non-680

equilibrium interactions? How do they relate to the initial geometry and the time evolution681

of the medium? Does a flow like mechanism in such small systems challenge the paradigm682

of perfect fluidity in A+A collisions or provide additional constraints on the underlying683

mechanisms? These questions have answers hinted at by the lever arm of comparing LHC684

and RHIC results. However, at RHIC we also have the opportunity to tune the geometry685

uniquely to definitively test the fundamentals behind many of these questions.686

The correlations are predominantly with low momentum particles and thus one requires a687

large minimum bias data set. The large PHENIX data acquisition bandwidth would allow688

an excellent measurement in d+Au and 3He+Au with one week of running for each with689

a relatively low luminosity requirement. The new PHENIX detectors, not available during690

the earlier Run-08 d+Au run, including the large tracking coverage VTX, FVTX, and the691

new MPC-EX would make these an excellent data set for these studies with over 1 billion692

events in each system, and more in the p+Au with the running detailed before.693

Figure 3.13: Left) Monte Carlo Glauber event display of a single 3He+Au event and the
energy deposit. The nucleon participant energy is distributed as a Gaussian with s = 0.4 fm.
(Middle and Right) Monte Carlo Glabuer mean #2 (middle) and #3 (right) for p+Au , d+Au,
3He+Au collisions as a function of the number of binary collisions. The spatial moments are
calculated using the same Gaussian smearing.

Just as the d+Au collisions have a significant intrinsic #2 (elliptical shape), the 3He+Au694

collisions have a significant intrinsic #3 (triangular shape). The question of whether these695
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spectra in dAu
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FIG. 4: (Color online) Invariant yield of π±, K±, and p and p̄ as a function of pT in Au+Au and d+Au collisions. The yields
are scaled by the arbitrary factors indicated in the legend, keeping collisions species grouped together.
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spectra should also be addressed by hydro calculations
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A. M. Sickles

conclusions

• ridge-like behavior seen at PHENIX at short and long range (Δη > 3) 
with large v2 at midrapidity

• we’re working to extend these measurements:

• yields, vN(η), different collision systems (pA, dA, He3A, peripheral 
heavy ions, asymmetric collisions...)

• ...in order to understand what’s going on in very small systems

33
more on d+Au: John Chen 9/12 parallel session
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• PHENIX dAu centrality 
determination by charge in 
Au-going BBC, which is in 
the same rapidity window as 
MPC: 3<η<4

• here determine the event 
centrality by number of  
PC1 hits (mid-rapidity)

• some differences, but 
qualitative features remain 
unchanged
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what is the eccentricity?
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FIG. 4. (Color online) Eccentricities ε2 and ε3 as a func-
tion of the number of wounded nucleons Npart. In the MC-
Glauber (participant centers) model the energy density is de-
posited in the centers of wounded nucleons (without smear-
ing). Smearing energy densities with the Gaussian distribu-
tion (σ0 = 0.4 fm) results in the MC-Glauber 1 model. In the
MC-Glauber 2 model the energy density is smeared about the
midpoint between colliding nucleons.

MC-Glauber 1 model and in the bottom plot, the corre-
sponding IP-Glasma model results. These are seen to be
quite different. In the latter, it is observed that the peaks
in the contour are closely associated with the centers of
the deuteron nucleon positions and vary strongly depend-
ing on the number of gold nucleon positions in their im-
mediate vicinity. In the former MC-Glauber case, signif-
icant energy densities are seen even in regions where nu-
cleons of the gold nucleus are widely separated in trans-
verse spatial position from the deuteron nucleons. Nucle-
ons that have been marginally grazed produce as much
energy density as those that have suffered a head on colli-
sion. In the IP-Glasma model, because the mean distance
in the projection onto the transverse plane between the
two nucleons in a deuteron is 2.52 fm, the majority of

events have widely separated interaction regions. This is
quite different in the MC-Glauber model.

Whether eccentricity is a relevant measure in deuteron-
gold collisions depends sensitively on the radial separa-
tion of the regions where energy density is deposited. If
they are too far apart for hydrodynamic flow to bring
them into contact over the system’s lifetime, the eccen-
tricity will be a poor measure of flow. If they are close
enough at the same eccentricity to influence subsequent
flow, the eccentricity will track flow better. Thus eccen-
tricity in deuteron-gold collisions, in contrast to nucleus-
nucleus collisions, is at best a qualitative measure of
anisotropic flow.
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p+Pb collisions A. Bzdak, B. Schenke, P. Tribedy, R. Venugopalan, arXiv:1304.3403

Eccentricities from different models
can differ significantly
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RdA
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FIG. 12: (Color online) Nuclear modification factor RdA as a function of pT in different centrality classes of charge averaged
pions, kaons, and protons, π0 [55], and φ [52]. A dashed black line is drawn at unity as a visual aid, indicating nonmodification.
The shaded gray boxes indicate the associated uncertainty on Ncoll from the Glauber model calculations.

eral bin the enhancement is much smaller, at a factor of
about 1.1–1.2, and is close to unmodified, similar to the
other particle species. This strong centrality dependence
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FIG. 13: (Color online) Ratio of K+/π+ and K−/π− as a
function of pT in peripheral Au+Au and central d+Au colli-
sions plotted together.

of the proton RdA is in fact very similar to the significant
centrality dependence of the p/π ratio, and these two ob-
servables are likely driven by the same mechanism. Also

 Au+Au 60-92%+πp/
 Au+Au 60-92%-π/p
 d+Au 0-20%+πp/
 d+Au 0-20%-π/p

π
R

at
io

 p
/

0

0.1

0.2

0.3

0.4

0.5

 (GeV/c)
T

p
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

FIG. 14: (Color online) Ratio of p/π+ and p̄/π− as a func-
tion of pT in peripheral Au+Au and central d+Au collisions
plotted together.

PHENIX:1304.3410



A. M. Sickles 38



A. M. Sickles

mid/d-going correlations
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NEW!
2

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

5

10

15

20

25

η
/d

ch
dN

η

d + Au 

200 GeV 
  0-20% 

 20-40% 

 40-60% 

 60-80% 

 80-100% 

 Min-bias 

FIG. 1: Measured pseudorapidity distributions of charged
particles from d + Au collisions at

√
s

NN
= 200 GeV as a

function of collision centrality. Shaded bands represent 90%
confidence level systematic errors and the statistical errors are
negligible. The minimum-bias distribution is shown as open
diamonds [10].

in the primary event trigger and in the offline event
selection.

The centrality determination was based on the ob-
served total energy deposited in the Ring counters, ERing,
which is proportional to the number of charged particles
hitting these detectors. The choice of this centrality
measure was based on extensive studies utilizing both
data and Monte Carlo (MC) simulations that sought to
minimize effects of auto-correlations on the final dNch/dη
result. These effects can be significant when using other
centrality measures [10], resulting in enhancements (sup-
pressions) in the reconstructed midrapidity yields of up
to ∼ 30% for central (peripheral) collisions. The MC
simulations used in the study included both HIJING
[11] and AMPT [12] event generators coupled to a full
GEANT [13] simulation of the PHOBOS detector.

Four additional centrality measures, discussed in Ref.
[10], were created in order to study the detailed effects
of auto-correlation biases. Ratios of the reconstructed
dNch/dη distributions obtained from the five centrality
measures for data and, independently, for the MC simula-
tions were found to agree, giving confidence in the entire
methodology. This information, together with knowledge
of the unbiased MC simulated “truth” distributions, pro-
vided a clear choice of the centrality measure based on
the Ring detectors as that which yielded the least bias
on the measurement. It is important to note that this
study only provided guidance with respect to the choice
of ERing for the experimental centrality measure, and the
final experimental dNch/dη results do not rely in any way

on the detailed shape of the dNch/dη distributions from
the MC simulations.

The multiplicity signals of ERing were divided into five
centrality bins, where each bin contained 20% of the
total cross section. For this to be done correctly, the
trigger and vertexing efficiency had to be determined for
each bin. Knowledge of the efficiency as a function of
multiplicity allowed for the correct centrality bin deter-
mination in data as well as the extraction of the corre-
sponding efficiency-averaged number of participants. A
comparison of the data and the MC simulations yielded
an overall efficiency of ∼ 83%.

Results of the Glauber calculations implemented in the
MC were used to estimate the average total number of
nucleon participants, 〈Npart〉, the number of participants
in the incident gold, 〈NAu

part〉, and the deuteron, 〈Nd
part〉,

nuclei, as well as the number of binary collisions, 〈Ncoll〉,
for each centrality bin (see Table I).

The details of the analysis leading to the measurements
of dNch/dη can be found in Ref. [14]. The measured
dNch/dη was corrected for particles which were absorbed
or produced in the surrounding material and for feed-
down products from weak decays of neutral strange par-
ticles. Uncertainties in dNch/dη associated with these
corrections range from 6% in the Octagon up to 28% in
the Rings. These uncertainties dominate the systematic
errors.

Figure 1 shows the pseudorapidity distributions
of primary charged particles for d + Au collisions
at

√
s

NN
= 200 GeV in five centrality bins and for

minimum-bias events. A detailed discussion of our
minimum-bias distribution can be found in Ref. [10]. As
a function of collision centrality, the integrated charged
particle multiplicity in the measured region (|η| ≤ 5.4)
and the estimated total charged particle multiplicity
extrapolated to the unmeasured region using guidance
from the shifted p+nucleus data (see Fig. 2) are pre-
sented in Table I. The centrality bins 0-20% and 80-
100% correspond to the most central and the most pe-
ripheral collisions, respectively. The pseudorapidity is
measured in the nucleon-nucleon center-of-mass frame; a
negative pseudorapidity corresponds to the gold nucleus
direction. For the most central collisions, the mean η
of the distribution is found to be negative, reflecting
the net longitudinal momentum of the participants in
the laboratory (NN) frame. For more peripheral col-
lisions, the mean η tends to zero as the distribution
becomes more symmetric. For measurements of d+Au in
the nucleon-nucleon center-of-mass system the Jacobian
between dNch/dy and dNch/dη naturally produces the
“double-hump” structure in dNch/dη even if there is no
structure in dNch/dy.

Now, we compare our d + Au results with p + A data
obtained at lower energy, and discuss the energy and
centrality dependence of the data. Figure 2 compares
dNch/dη distributions of d + Au to p + Emulsion (Em)
collisions at five energies [15, 16], in the effective rest
frame of both the projectile “beam” (a) and target (b).
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