Experimental Results on Two & Three Particle Correlations

Anne Sickles Brookhaven June 9, 2008

Goal: Jet Tomography

use a calibrated probe to study matter created in heavy ion collisions

- we need to understand the probe, jets
 - p+p & d+Au collisions
- we need to understand the interaction of the probe and the matter
- we need to understand geometrical biases in the measurements

Unmodified Jets

away side jet: smeared in Δη partonic kinematics

The Jet Landscape: Au+Au

4 distinct structures: ridge & shoulder unique to heavy ion collisions

Anne Sickles BNL June 9, 2008 Hard Probes 2008

The Plan

- The Shoulder
- Comparing the Shoulder and the Ridge
- High pT: Di-jets
- Particle Ratios and "Medium Response"
- Some New Measurements

Anne Sickles

BNL June 9, 2008

800

Anne Sickles BNL June 9, 2008

shoulder doesn't move or disappear with trigger p_T

increasing trigger Рт

PHENIX, 0801.4545 [nucl-ex]

Anne Sickles

BNL June 9, 2008

Hard Probes 2008

M. Szuba QM2008

Shoulder is Conical

Anne Sickles

BNL

The Shoulder

- Shoulder is unlikely to be an artifact of the background subtraction, v₂ values or anything else, since those change radically from SPS to RHIC, as a function geometry, N_{part}, etc...
- What does it mean that this structure doesn't change from SPS energies to RHIC energies?
 - the data favor Mach Cone scenarios: is the speed of sound the same everywhere?
 - is there a ridge at the SPS?

Ridge vs Shoulder

ridge & shoulder: similar centrality & p⊤ dependence -both sensitive to medium properties?

J. Chen Tuesday parallel

Correlations are Softer at Low pt

STAR, PRL 97 162301 (2007)

STAR, PRL 97 162301 (2007)

Anne Sickles BNL June 9, 2008 Hard Probes 2008

STAR, PRL 97 162301 (2007)

8 < рт, trig < I5GeV/с Au+Au, 20-40% Au+Au, 0-5% Near side, $I\Delta \phi I < 0.63$ Away side, $I\Delta \phi - \pi I < 0.63$ d+Au Assoc. yield per trigger ω 0.3 ۸ $3 < p_{\tau}(assoc) < 4$ (×1.5) 0 p_r(assoc) < $4 < p_{\perp}(assoc) < 6$ 0.2 $p_{(assoc)} > 6 \text{ GeV/c}$ Δ 0.1 - Q ÷ 4 0.1 ÷ 0.2 4 ۸ Þ Ō. φ 0.15 p_T(assoc) ф ф $\frac{1}{N_{trig}}\frac{dN}{d(\Delta \phi)}$ ф φ ¥ ¥ 0.1 ¥ 0.05 Ł ۸ ł ¥ ₫ റ Ł 0.1 p_T(assoc) > 0.01 0 100 200 300 100 0 N_{Part} 0.05 σ no significant centrality dependence on the near side 0 $\Delta \phi (rad)^{\pi}$ 0 π π

> suppression with increasing centrality on the away side

STAR, PRL 97 162301 (2007)

¢

ф

¥

200

þ

300

÷

Φ

N_{Part}

2+1 Correlations

T1: p_T>5 GeV/*c*, T2: p_T>4 GeV/*c*, A: p_T>1.5 GeV/*c*

next step: cone around di-jet axis, lower trigger p_T (or assoc. p_T), ridge? shoulder?

Anne Sickles BNL June 9, 2008 Hard Probes 2008

baryons

PRL 91 172301 (2003)

baryons

PRL 91 172301 (2003)

what does this have to do with hard scattering?

Anne Sickles BNL June 9, 2008 Hard Probes 2008

C. Suarez, QM08

C. Suarez, QM08

C. Suarez, QM08

baryon excess in the ridge!

Anne Sickles BNL June 9, 2008 Hard Probes 2008

baryons in the away side

PHENIX, 0712.3033 [nucl-ex]

enhanced baryon/meson ratio in shoulder/di-jet region

baryons in the away side

away side baryon/meson ratio approaches single particle ratio PHENIX, 0712.3033 [nucl-ex]

enhanced baryon/meson ratio in shoulder/di-jet region

baryons in the away side

away side baryon/meson ratio approaches single particle ratio PHENIX, 0712.3033 [nucl-ex]

enhanced baryon/meson ratio in shoulder/di-jet region

another connection between ridge & shoulder!

p & p are correlated

these correlations look pretty jet-like, how does this all fit together?

Anne Sickles BNL

June 9, 2008

Hard Probes 2008

electrons from heavy flavor

- energy loss similar to that of π₀ for electrons from both D and B decay
- electrons from heavy flavor also flow
- what do the correlations look like?

PHENIX, PRL 98172301 (2007)

correlations of heavy flavor

0 - 20%: 3 < p_{τ}^{trig} < 6 GeV/c & 0.15 < p_{τ}^{asso} < 0.5 GeV/c (

eV/c Cu+Cu, 200GeV

- difficult measurement since electrons from conversions and Dalitz decays will carry the shoulder signal
- hadrons associated with electrons from D/B decay also show shoulder structure

G. Wang QM08

fragmentation photons: p+p

Integrated near side h - γ yield

- ask how many times you have a small angle hadron-photon correlation
- tag and subtract photons from π⁰ & η decay

A. Hanks, Thursday

fragmentation photons: p+p

- ask how many times you have a small angle hadron-photon correlation
- tag and subtract photons from π⁰ & η decay

~5-10% of inclusive photons fragmentation!

A. Hanks, Thursday

 consistent with fragmentation photon measurement via isolation cuts

- consistent with fragmentation photon measurement via isolation cuts
- establishes baseline for future Au+Au measurements

A. Hanks, Thursday parallel

24

beyond ZYAM

- ZYAM: assume there is a $\Delta \phi$ region without signal:
 - over-subtracts, especially for:
 - wide jets
 - small signal/combinatoric background
 - absolute subtraction: background from convolution of single particle rates nucl-ex/ 0702007)
 - background determination independent of signal shape
 - methods agree well (PHENIX, PRL98 232302 (2007)) with moderate statistics
 - with high precision measurements, ZYAM is a significant bias

Where Next?

- controlling the geometry:
 - more 2+1 correlations: can we see the shoulder and ridge grow?
 - reaction plane dependence: does the shoulder show a threshold with a given path length?
- connections between heavy and light quarks
- fragmentation functions: gamma-hadron, jet reconstruction
- what is the ridge?
- d+Au (new large data set on tape): saturation effects?