

Light-Heavy Collisions at RHIC: d+Au & He3+Au

Anne M. Sickles April 9, 2015

ridges & flow in AA collisions

the ridge: long range Δη correlation in heavy ion collisions many theoretical explanations proposed...

2

ridges & flow in AA collisions

1.5

the ridge: long range $\Delta \eta$ correlation in heavy ion collisions many theoretical explanations proposed...

ridges & flow in AA collisions

the ridge: long range Δη correlation in heavy ion collisions many theoretical explanations proposed...

ridge: geometry + hydrodynamic evolution

1.5

ALICE PLB708 249 Alver & Roland PRC81 054905

(d) CMS N \geq 110, 1.0GeV/c<p_<3.0GeV/c

(d) CMS N \geq 110, 1.0GeV/c<p_{T}<3.0GeV/c

a closer look at pPb

ATLAS PRL 110 102303

a closer look at pPb

geometry in AA & pA

impact parameter + fluctuations

рΑ

AA

fluctuations

variation of the small nucleus

control the collision geometry by varying the small nucleus

variation of the small nucleus

control the collision geometry by varying the small nucleus does v2 reflect the geometry of the initial state in p/d+A as in A+A?

two particle correlations in dAu

two particle correlations in dAu

two particle correlations in dAu

PHENIX PRL 111 212301

centrality dependence

evidence for double ridges, but not a long range measurement

PHENIX PRL 111 212301 (2013) ATLAS PRL 110 182302 (2013)

rapidity separated correlations

Muon Piston Calorimeters

both d-going & Augoing directions $3 < |\eta| < 4$

Side View

PHENIX: 1404.7461

STAR: 1502.07652

long range d+Au v₂

- event plane
 reconstructed @ η = 3-4,
 v₂ of particles @ |η| <
 0.35
- true long range correlations
- v₂ slightly reduced from 2PC method, event plane method much less sensitive to any jet contributions

PHENIX: 1404.7461, accepted by PRL

article mass dependence

• event plane method

5.0

- characteristic flow particle mass dependence
 - stronger radial flow at the LHC

heavy flavor?

ALICE Average D⁰, D⁺, D^{*+}

AMS: PLBN739251e (2014) -0.96<y_cms<0.04 18

variation of the small nucleus

systematic variation of small nucleus ongoing at RHIC!

what can be learned from these small systems?

theory calculations, b<2fm

He3+Au: first data!

strong v2; v3 ~ hydrodynamic expectations

smaller and cooler?

smaller and cooler?

pA collisions: how is the QGP formed, how does it thermalize, what is the initial energy density distribution?

dAu, pPb, AuAu & PbPb

24

pre-equilibrium

Light-Heavy Ion Collisions: A window into pre-equilibrium QCD dynamics?

smaller systems, higher harmonics, lower energies: more sensitive to earliest times

Heavy Ion Programs at RHIC and LHC

the pA physics story is made possible by the simultaneous strong programs at both RHIC & the LHC

- wealth of low pT measurements at both RHIC and LHC
 - from surprises to systematic measurements
- on track to understand more about the very young QGP with pA systems at RHIC
- data & theoretical developments at the same time drive progress
- eA: pA lessons drive interest in eA collisions with the EIC!

extras