Experimental Perspectives on Hard Probes in Heavy Ion Collisions at RHIC

Anne Sickles November 3, 2010

parton_i(E)

→determine the mechanism(s) of energy loss
pQCD radiative & collisional, AdS/CFT,
something else?
→determine the strength of the interactions

reality more complicated

reality more complicated

geometry, intial state effects, time evolution, fragementation, flow of various kinds

reality more complicated

geometry, intial state effects, time evolution, fragementation, flow of various kinds

it's all important!, so how do we learn anything...

Anne M. Sickles

$$R_{AA} = \frac{\text{yield AuAu}}{N_{\text{coll}} \text{ yield pp}}$$

large energy loss

large energy loss

• both π^0 & η R_{AA} still flat out to 20GeV/c!

what's opposite these $\pi^0 s$?

PHENIX PRL 104 252301 (2010)

Anne M. Sickles

DNP Santa Fe

5

what's opposite these $\pi^0 s$?

what's opposite these $\pi^0 s$?

Anne M. Sickles

5

Y-jet correlations

Y-jet correlations

Anne M. Sickles

Y-jet correlations

no significant difference between π⁰ & γ triggered away sides

Anne M. Sickles

arXiv:0912.1871, arXiv:1002.1077, Zhang et al

arXiv:0912.1871, arXiv:1002.1077, Zhang et al

arXiv:0912.1871, arXiv:1002.1077, Zhang et al

• ZOWW with $\varepsilon_0 = 1.68$

arXiv:0912.1871, arXiv:1002.1077, Zhang et al

uses hard sphere geometry rather than hydro medium

arXiv:0912.1871, arXiv:1002.1077, Zhang et al

Anne M. Sickles

reaction plane: a closer look

points to very strong path length dependence

PHENIX PRL 105 142301 (2010)

same message from I_{AA}

energy loss calculation from Renk in 2 hydro codes (Nokana & Bass and Eskola et al.)

PHENIX 1010.1521

Anne M. Sickles

same message from I_{AA}

details matter!

- a model that successfully describes the π⁰ results, including, reaction plane dependence hasn't been found yet
- reaction plane data has proven a challenge to models
- challenge to theorists
 - but also to experimentalists
 - what other observables can help point in the right direction?

Anne M. Sickles

DNP Santa Fe

November 3, 2010 11

Anne M. Sickles

DNP Santa Fe

November 3, 2010 11

Anne M. Sickles

DNP Santa Fe

November 3, 2010 11

well, what do you expect?

well, what do you expect?

 $\Delta \equiv n^{exp} - n^{NLO}$

well, what do you expect?

$$\Delta \equiv n^{exp} - n^{NLO}$$

prediction for 500GeV p+p data

RHIC: 500GeV/200GeV LHC: 7TeV/1.8TeV

Arleo, Brodsky, Hwang, AMS: PRL105 062002
prediction for 500GeV p+p data

RHIC: 500GeV/200GeV LHC: 7TeV/1.8TeV

Arleo, Brodsky, Hwang, AMS: PRL105 062002

parton k_T

momentum imbalance between photon & jet large nuclear effects: small

parton k_T

momentum imbalance between photon & jet large nuclear effects: small

parton k_T

momentum imbalance between photon & jet large nuclear effects: small

p+p: 2.8±0.1GeV/c d+Au: 3.0±0.1GeV/c

J. Kapitan HP 2010

parton k_T

momentum imbalance between photon & jet large nuclear effects: small

nuclear effects: small

p+p: 2.8±0.1GeV/c d+Au: 3.0±0.1GeV/c

J. Kapitan HP 2010

direct photon correlations

M. Connors HP10

modified fragmentation?

modified fragmentation?

heavy flavor

heavy flavor

Anne M. Sickles

DNP Santa Fe

heavy flavor

- collectivity and suppression
- not expected from radiative energy loss

PHENIX PRL 103 082002 (2009) STAR: 1007.1200 [nucl-ex]

Anne M. Sickles

DNP Santa Fe

PHENIX PRL 103 082002 (2009) STAR: 1007.1200 [nucl-ex]

- suppression large even as electrons become dominated by bottom at high p_T
 - well described by FONLL

PHENIX PRL 103 082002 (2009) STAR: 1007.1200 [nucl-ex]

- suppression large even as electrons become dominated by bottom at high pT
 - well described by FONLL

 $R_{AA}^{\rm HF} = (1 - r_B)R_{AA}^{e_D} + r_B R_{AA}^{e_B}$

PHENIX PRL 103 082002 (2009) STAR: 1007.1200 [nucl-ex]

PHENIX lyl <0.35

90% C.L

FONLL error band y=0

FONLL v=0

09

0.8

0.7

0.5

0.4

0.3 0.2

0.1

b→ e/(c→ e+b-

- suppression large even as electrons become dominated by bottom at high p_T
 - well described by FONLL

90% C.L.

p+p at√s=200 GeV

HF: e[±]-h[±] Correlations

• the next step forward

HF: e[±]-h[±] Correlations

HF: e[±]-h[±] Correlations

HF: away side shape

HF & light hadron triggered away side shapes both modified

not unexpected

heavy quark production diagrams

not unexpected

heavy quark production diagrams

sizable contributions from NLO effects

pp @ 630GeV

- UAI µµ correlations
- fit with ISAJET
- 20-35% "higher order"

$p_{T\mu}^{high}$ range [GeV/c]	р _{ть} range [GeV/c]	$b\overline{b}$ nonisol. $m_{\mu\mu} > 4 \text{ GeV/c}^2$ [events]	'high.ord.' fraction [%]
All	≳6	829±58	26.2 ± 4.0
3–5	≳6	402 ± 37	24.6 ± 8.5
5-7	≳8	286 ± 23	31.2 ± 5.4
7-10	≥11 ≥15	103 ± 12 32 + 6	35.2 ± 5.1 21 3 + 12 4

Z Phys C 61 41 1994

e-e correlations at RHIC needed to quantify this!

$e-\mu$ correlations

• sensitive to correlated charm, but at forward/mid-rapidity

T. Engelmore, QM09

jets

great recent progress!

p+p: well understood

algorithm matters

algorithm matters

broadening

qualitatively what you'd expect from both broadening and background

broadening

 qualitatively what you'd expect from both broadening and background

broadening on both near and away sides...

5

Δø

broadening

the future

- jets offer huge rate advantages and a reduction of biases from spectra & correlations
- however need a real jet detector for RHIC
 - high rate, hadronic calorimetry, heavy flavor tagging, large acceptance
 - complementary to LHC

PHENIX Decadal Plan, Jacak HPI0

Conclusions

- theoretical understanding of π^0 results still elusive
 - strong path length dependence in the data
- reaction plane dependent and heavy quark results suggestive of AdS/CFT type scenarios
 - strong L dependence & strong HF energy loss
- softening and broadening of fragmentation observed
- challenges to both theory and experiment
 - theory: detailed modeling of medium & geometry
 - experiment: sensitive measurements → reaction plane dependences, heavy flavor, jets

Fourier Components of STAR ϕ_s data HP2010

Fourier coefficients v_1 , v_2 , v_3 , v_4 exhaust information content of C.F.'s vs ϕ_s All four v_N components are result from hydro flow - magnitude? What is the more natural basis to begin physics discussion?

charm & bottom: theory

knowledge of relative c/b contributions crucial for understanding HF modifications in Au+Au collisions
separating the correlations

$$Y_{e_{incl}-h} = \frac{N_{e_{HF}}Y_{e_{HF}-h} + N_{e_{phot}}Y_{e_{phot}-h}}{N_{e_{HF}} + N_{e_{phot}}}$$

separating the correlations

separating the correlations

e_{phot}-h correlations

$$Y_{e_{HF}-h} = \frac{(R_{HF}+1)Y_{e_{incl}-h} - Y_{e_{phot}-h}}{R_{HF}}$$

- photonic electrons: Dalitz decays and γ conversions
 - dominantly from $\pi^0 s$
- measure γ_{inc}-h correlations
 - also dominantly from π^0 s
- use MC to map between
 e_{phot}(p_T) & γ_{inc}(p_T)

e_{phot}-h correlations (II)

$$Y_{e_{phot}-h}(p_{T,i}) = \sum_{j} w_i(p_{T,j}) Y_{\gamma-h}(p_{T,j})$$

charm production subprocesses

most of the time a D is not balanced by a mid-rapidity D (caveat: LO calculation)

Vitev et al PRD 74 054010 (2006)

POWHEG NLO Monte Carlo: 2→2 & 2→3 processes

POWHEG NLO Monte Carlo: 2→2 & 2→3 processes

POWHEG NLO Monte Carlo: 2→2 & 2→3 processes

POWHEG NLO Monte Carlo: 2→2 & 2→3 processes

light parton jets are a significant contribution to the away side correlations

Anne M. Sickles

DNP Santa Fe

Light Quark Fragmentation

- fragmentation functions from e⁺e⁻ collisions
- most particles carry small fraction of jet energy

Particle Data Book

Anne M. Sickles

what about heavy quark jets?

• $c \rightarrow D$ fragmentation hard

• $b \rightarrow B$ fragmentation harder

Particle Data Book

...and the rest of jet energy?

de Florian et al PRD 76 074033 (2007)

matt's results

conditional yields

- near side: heavy quarks, dominated by decays
- away side: heavy & light partons, fragmentation and decays

AdS/CFT: Correlations from Neck region

RAA of hadrons

