

Big Questions from Small Systems: dAu at RHIC

Anne M. Sickles Brookhaven

DNP Newport News 2013

hydrodynamics in heavy ions

hydrodynamics in heavy ions

the ridge in heavy ion collisions

the ridge: long range Δη correlation in heavy ion collisions many theoretical explanations proposed...

> STAR PRC80 064912 ALICE PLB708 249 Alver & Roland PRC81 054905

the ridge in heavy ion collisions

the ridge: long range Δη correlation in heavy ion collisions many theoretical explanations proposed...

the ridge in heavy ion collisions

the ridge: long range Δη correlation in heavy ion collisions many theoretical explanations proposed...

pp & pPb ridges

(d) CMS N \geq 110, 1.0GeV/c<p_{T}<3.0GeV/c

CMS PLB 718 795 (2013) ALICE PLB 719 29 ATLAS PRL 110 182302

CMS PLB 718 795 (2013) ALICE PLB 719 29 ATLAS PRL 110 182302

ATLAS p+Pb $\sqrt{s_{NN}}$ =5.02 TeV, $\int L \approx 1 \mu b^{-1}$ 0.5< $p_{T}^{a,b}$ <4 GeV, 2<|Δη|<5 → ΣE_T^{Pb}>80 GeV b_{ZYAM}^{C} =14.3 0.6 $-\Box$ $\Sigma E_T^{Pb} < 20 \text{ GeV}$ $b_{ZYAM}^{P} = 3.2$ $\Upsilon(\Delta \phi)$ 0.4 Ο Ο Ο 0.2 0 8 0 0 2 3 0 $\Delta \phi$

-2

-4

CMS PLB 718 795 (2013) **ALICE PLB 719 29** ATLAS PRL 110 182302

 $\mathbf{R}(\Delta\eta,\Delta\phi)$

Δ

 $\sqrt[2]{\sqrt[3]{g}}$

A. M. Sickles

ridge in small systems

Color Glass Condensate

hydrodynamics

RHIC & LHC

5.02TeV pPb

200GeV dAu

25x difference in collision energy d-A vs p-A large data sample already on tape

centrality dependence

7

centrality dependence

8

centrality dependence consistently described by cos2Δφ shape evidence for double ridge

centrality dependence consistently described by cos2Δφ shape evidence for double ridge

but is this just an artifact of the small $|\Delta \eta|$ acceptance?

results from STAR

central - peripheral

A. M. Sickles

even larger $|\Delta \eta|$

- Muon Piston Calorimeter
- correlate with central arm: long range: $3 < |\Delta \eta| < 4$
- separate d-going and Au-going phenomena

•

- Muon Piston Calorimeter
- correlate with central arm: long range: $3 < |\Delta \eta| < 4$
- separate d-going and Au-going phenomena

•

mid/d-going correlations

PHOBOS PRC72 031901

no evidence for long range correlation at $\Delta\phi \sim 0$

A. M. Sickles

mid/d-going correlations

A. M. Sickles

mid/Au-going correlations

4

d-going

back to mid-rapidity

PHENIX: 1303.1794 F. Wang IS2013

A. M. Sickles

RHIC comparisons

PHENIX: 1303.1794 F. Wang IS2013

what about the CGC?

significant signal expected at RHIC!

- smaller yield expected at RHIC compared to LHC
- Fourier coefficients aren't calculated for this model--working to compare to data

comparison to hydro calculations

qualitative agreement with hydro calculations with $\eta/s \leq 0.08$

the shape of the initial state

- d+Au:
 - larger v₂
 - smaller dependence on initial state description

22

 v_2/ϵ_2 vs multiplicity

a common relationship between geometry and v₂?

scaling with overlap area?

CMS PRC 87 014902

scaling with overlap area?

• approximate scaling with $1/S dN_{ch}/d\eta$

- significant uncertainties due to nucleon representations in d+Au
- n.b. not directly comparable to other 1/S plots, here v_2 at fixed p_T !

v₃ at RHIC?

no evidence for significant v3, consistent with hydro expectations

26

determine the role of geometry

determine the role of geometry

increase the triangularity of the initial state! what happens to v₃?

geometry running planned for 2015 running PHENIX: increased acceptance relative to previous d+Au running (VTX/FVTX)

<N_{coll}>

particle species dependence

larger Cronin effect for p than π

STAR PLB 616 8 PHENIX PRC 88 024906

...and heavy flavor

electrons from heavy flavor decays

PHENIX PRL 109 242301 PHENIX PRC 84 044905

what about radial How!

- Shuryak & Zahed (1301.4470 & WWND2013)
 - pA systems especially sensitive to radial flow...

the Blast-Wave

$$\frac{1}{p_T}\frac{dN}{dp_T} \propto \int_0^R r \, dr \, m_T \, I_0\left(\frac{p_T \sinh \rho}{T_{fo}}\right) K_1\left(\frac{m_T \cosh \rho}{T_{fo}}\right) \qquad \rho = \tanh^{-1}\left(\beta_{max} \left(r/R\right)^n\right)$$

PHENIX PRC 88 024906

blast-wave fit to dAu data

0-20% d+Au $\beta_{\rm max} = 0.70$ $T_{fo} = 139 MeV$

data: PHENIX PRC 88 024906 AMS: 1309.6924

blast-wave fit to dAu data

0-20% d+Au $\beta_{\rm max} = 0.70$ $T_{fo} = 139 MeV$

data: PHENIX PRC 88 024906 AMS: 1309.6924

blast-wave fit to dAu data

data: PHENIX PRC 88 024906 AMS: 1309.6924

and for the electrons?

are we really looking at cold nuclear matter effects?

reconstructed D RdAu measurements at RHIC would be very telling

data: PHENIX PRL 109 242301 AMS: 1309.6924

evolution with system size

Cu+Cu collisions

evolution with system size

comparison of system size and geometry is key to understanding relationship between big and small systems

conclusions

- exciting effects seen in d+Au collisions which challenge the distinction between "hot" and "cold" nuclear matter
- upcoming geometry runs promise new understanding
 - smaller HI systems already helping to connect dA to AA
 - other observables: HBT (Ajitanand FG.00007, balance functions 1005.2307...)

compelling illustration of the complementarity between RHIC & LHC and the power of varying the collision system

backups

remaining jet effects?

issue: short range effects from centrality dependent jet modifications could modify near side correlations within small $|\Delta \eta|$

remaining jet effects?

issue: short range effects from centrality dependent jet modifications could modify near side correlations within small $|\Delta \eta|$

- vary the minimum $|\Delta \eta|$ cut from 0.36 to 0.60
- look at the charge sign dependence:
 - jet correlations are enhanced for opposite sign pairs and suppressed for same sign pairs
- further studying with event generators
- look for long range correlations

remaining jet effects?

issue: short range effects from centrality dependent jet modifications could modify near side correlations within small $|\Delta \eta|$

- vary the minimum $|\Delta \eta|$ cut from 0.36 to 0.60
- look at the charge sign dependence:
 - jet correlations are enhanced for opposite sign pairs and suppressed for same sign pairs
- further studying with event generators
- look for long range correlations

pPb vs dAu

d+A central collisions have much larger ε_2 than p+A

extract v₂ via factorization

c2(p_{T,a},p_{T,b}) = v2(p_{T,a})v2(p_{T,b})
→factorization assumption: two particle modulation is the product of the single particle anisotropies, no inconsistencies with this assumption found

Hijing expectations?

- HIJING has no flow, no CGC
- perform the same study with HIJING as in the data

HIJING c₂ consistent with 0, much smaller than in data

D results at RHIC

