Correlations of Electrons from Heavy Flavor Decay in p+p, d+Au and Au+Au Collisions

Anne Sickles for the PHENIX Collaboration April 21, 2010

motivation

- p+p collisions:
 - understand heavy flavor production
 - baseline for Au+Au measurements
- d+Au collisions:
 - cold nuclear matter effects
 - probe nuclear gluon distribution
 - baseline for Au+Au measurements
- Au+Au collisions:
 - understand heavy quark energy loss in hot nuclear matter

identifying heavy flavor

- use leptons from semi-leptonic D & B decay
 - advantage: straightforward ways to subtract correlations from non-heavy flavor leptons
 - disadvantages:
 - no charm/bottom separation
 - broad distribution of parent meson p_T for given lepton p_T

PHENIX

- central arms cover $|\eta| < 0.35$
- charged particle momenta measured in drift chambers
- electron identification from electromagnetic calorimeters and RICH
 - hadronic background in electron sample <3% in head on Au+Au collisions

PHENIX (II)

- muon arms in forward and backward rapidity
- MuTr determines momentum
- MuTr magnet and muon identifier steel stop hadrons
- muons make it to the last layer
- →pion rejection of 250:1

charm and bottom mixture

theory and experiment agree well!

separating the correlations

PHENIX, PRL 97 252002 (2006)

electron-hadron azimuthal correlations

- measure $\Delta \phi$ of all electron-hadron pairs
- statistically subtract correlations from non-heavy flavor (photonic) electrons
 - mainly from π⁰s via Dalitz decays and photon conversions

$$R_{HF} = \frac{N_{e_{HF}}}{N_{e_{phot}}}$$

$$Y_{e_{HF}-h} = \frac{(R_{HF}+1)Y_{e_{incl}-h} - Y_{e_{phot}-h}}{R_{HF}}$$

PHENIX, PRL 97 252002 (2006)

10

extracting HF correlations

p+p Results

near side widths

arXiv: 0905.2112

near side widths

 $\sigma_{HF} > \sigma_{phot}$: D/B decay kinematics

arXiv: 0905.2112

near side widths

$\sigma_{HF} > \sigma_{phot}$: D/B decay kinematics

good agreement with PYTHIA (charm production)

arXiv: 0905.2112

heavy flavor e-h yields

arXiv: 0905.2112, 0907.4813

heavy flavor e-h yields

arXiv: 0905.2112, 0907.4813

heavy flavor e-h yields

heavy flavor $e^{\frac{2}{4}}h$ yields

e-µ correlations

- both particles from heavy flavor decay
- electron: |η|<0.35, μ: Ι.4<|η|<2.1
- signal produces opposite sign pairs
 - most background removed by subtracting like sign pairs
 - remaining hadrons in μ sample also subtracted

$e-\mu$ in d+Au

- forward rapidity particles sensitive to low x in the nucleus
- possible gluon saturation effects might become important around x~0.01

d+Au results

DIS 2010

Anne M. Sickles

Conclusions

- electron-hadron correlations measured in p+p and Au+Au collisions
 - p+p qualitatively consistent with PYTHIA expectations
 - Au+Au consistent with suppression compared to p+p
- electron-muon correlations measured in p+p and d+Au collisions
 - suppression in d+Au seen for deuteron going muons
 - further quantification underway
- next year new silicon vertex detector will allow charm/ bottom separation leading to more precise measurements

PRC 78 014901 (2008)

• near side: IAA~I

PRC 78 014901 (2008)

near side: IAA~I

consistent with electrons from Ds

PRC 78 014901 (2008)

- near side: IAA~I
 - consistent with electrons from Ds
 - sanity check

PRC 78 014901 (2008)

- near side: IAA~I
 - consistent with electrons from Ds
 - sanity check
- away side:

PRC 78 014901 (2008)

- near side: IAA~I
 - consistent with electrons from Ds
 - sanity check
- away side:
 - very similar to light hadron IAA

PRC 78 014901 (2008)

- near side: IAA~I
 - consistent with electrons from Ds
 - sanity check
- away side:
 - very similar to light hadron IAA

PRC 78 014901 (2008)

