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how hot?
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The nucleus

• >99% of the mass of 
atoms, and thus normal 
matter, is in the nucleus!

• composed of protons and 
neutrons!

• the nucleus is held together 
by the strong force!

• one of the 4 fundamental 
forces!

• very strong short range 
interactions
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and what’s inside protons and neutrons?
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quarks and gluons
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confinement

confinement makes the strong force hard to study because the details are 
locked inside the protons and neutrons

fundamental particles which interact !
via the strong force
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strong force at high temperature
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+ energy

a system that’s hot and dense enough for the quarks and gluons to not 
be confined anymore

nucleus !
(many protons & neutrons)



strong force at high temperature
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to create a system that’s hot and dense enough for the quarks and 
gluons to not be confined anymore: the quark gluon plasma



Colliders at BNL and CERN
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!
0.200 TeV collision energy!

Au+Au
2.76 TeV collision energy!

 Pb+Pb!

RHIC LHC



relativistic heavy ion collisions
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Quark Gluon Plasma

lasts for a billionth of a trillionth of a second!
and billion times smaller than a pixel on an iPhone display

5T ° F

quark-gluon plasma!
!

no photo available



what do we see?

9PCM & clust. hadronization

NFD

NFD & hadronic TM

PCM & hadronic TM

CYM & LGT

string & hadronic TM

hundreds or thousands of new particles are !
created in each collision

these particles provide the only window into the 
earlier stages of the collision
we look at each collision individually, but 
measure billions of collisions!

E = mc2



RHIC @ Brookhaven
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RHIC

NSRL
LINAC

Booster

AGS

Tandems

STAR!
6:00 o’clock

PHENIX!
8:00 o’clock

EBIS

BLIP



PHENIX Detector 
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the aftermath of a collision
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PCM & clust. hadronization

NFD

NFD & hadronic TM

PCM & hadronic TM

CYM & LGT

string & hadronic TM



the aftermath of a single collision
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collision geometry
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view: one nuclei going into the screen and one coming out

varying the distance between the nuclei, changes the shape and 
size of the region where the nuclei overlap
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the parts of the nuclei that don’t overlap continue on and don’t 
play a role



-10 -5 0 5 10

-10

-5

0

5

10

counting particles

16

332 ATLAS Collaboration / Physics Letters B 707 (2012) 330–348

Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:

E
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]
)
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where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
2

tan−1
( ∑

Etower
T,i wi sin(2φi)

∑
Etower

T,i wi cos(2φi)

)
, (2)

where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:

E
d3N
dp3 = 1

pT

d3N
dφ dpT dy

= 1
2π pT

E
p

d2N
dpT dη

(

1 + 2
∞∑

n=1

vn cos
[
n(φ − Ψn)

]
)

, (1)

where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
2

tan−1
( ∑

Etower
T,i wi sin(2φi)

∑
Etower

T,i wi cos(2φi)

)
, (2)

where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event

more particles come out the long side !
than the short side!
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• liquids flow
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in Ref. [17]:

Ψ2 = 1
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where sums run over tower transverse energies Etower
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sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:
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where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
2

tan−1
( ∑
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where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.
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notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
2

tan−1
( ∑

Etower
T,i wi sin(2φi)

∑
Etower

T,i wi cos(2φi)

)
, (2)
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sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over
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the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
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azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:
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wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over
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the quantitative estimates of v2. The curve is a fit to 1 + ∑
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the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
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bution [17]:

E
d3N
dp3 = 1

pT

d3N
dφ dpT dy

= 1
2π pT

E
p

d2N
dpT dη

(

1 + 2
∞∑

n=1

vn cos
[
n(φ − Ψn)

]
)

, (1)

where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
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each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:
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where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
2

tan−1
( ∑

Etower
T,i wi sin(2φi)

∑
Etower

T,i wi cos(2φi)

)
, (2)

where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over
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the quantitative estimates of v2. The curve is a fit to 1 + ∑
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the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.
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where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
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Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event

v2 is the strength of the modulation



v2 in heavy ion collisions

25

 multiplicity 
10 210 310

2v

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

=0.200 TeVsAu+Au 

=2.76 TeVsPb+Pb 

=0.200 TeVsAu+Au 

=2.76 TeVsPb+Pb 

PHENIX PRL 105 062301!
CMS PRC 87 014902

number of produced particles

RHIC

LHC



quantifying shapes

26

ε2 = 0

eccentricity (ε2) is related to how elongated any shape is

ε2 = 1ε2 = 0.17 ε2 = 0.50



ratio: v2 / ε2
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relationship between geometry (ε2) and v2 is a signature 
of small viscosity QGP
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How Small can the Quark 
Gluon Plasma Be?
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why take something so small and make it smaller?

• changing the shape and size of the QGP help to 
measure the viscosity
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why take something so small and make it smaller?

• changing the shape and size of the QGP help to 
measure the viscosity



v2 in p+Pb collisions @ the LHC
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!
ALICE PLB 719 29 (2013)!

ATLAS PRL 110 182302 (2013)
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big vs small collisions
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can we have a collision with large eccentricity, but similar size to p+Pb?

large ε2 small ε2
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varying the small nucleus
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d+Au!
large ε2

p+Pb!
small ε2
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deuteron (d): 1 proton and 1 neutron



which way does the ellipse go?

34

-10 -8 -6 -4 -2 0 2 4 6 8 10-10

-8

-6

-4

-2

0

2

4

6

8

10

-1
0

-8
-6

-4
-2

0
2

4
6

8
10

-1
0-8

-6

-4

-2

0

2

4

6

810
-10

-8
-6

-4
-2

0
2

4
6

8
10

-10

-8

-6

-4

-2

0

2

4

6

8
10

in any given event, we can’t control it and it’s hard to measure 
for these small systems



looking for v2 in d+Au
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hunting down the signal
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v2 / ε2, expectations in d+Au
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!
ALICE PLB 719 29 (2013)!

ATLAS PRL 110 182302 (2013)
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v2 / ε2
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a small QGP?
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continuous behavior from big to small collisions
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a small QGP?
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continuous behavior from big to small collisions
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particle distributions reflect initial shape
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Fig. 1. Measured FCalΣ ET distribution divided into 10% centrality intervals (black).
Proton–proton data at

√
s = 2.76 TeV, convolved with a Glauber Monte Carlo calcu-

lation with x = 0.088 (grey), as described in the text.

measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.

The final state momentum anisotropy can be quantified by
studying the Fourier decomposition of the azimuthal angle distri-
bution [17]:

E
d3N
dp3 = 1

pT

d3N
dφ dpT dy

= 1
2π pT

E
p

d2N
dpT dη

(

1 + 2
∞∑

n=1

vn cos
[
n(φ − Ψn)

]
)

, (1)

where y, pT and φ are the rapidity, transverse momentum, and
azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.

In this analysis, the n = 2 event plane is determined from the
data on an event-by-event basis, according to the scheme outlined
in Ref. [17]:

Ψ2 = 1
2

tan−1
( ∑

Etower
T,i wi sin(2φi)

∑
Etower

T,i wi cos(2φi)

)
, (2)

where sums run over tower transverse energies Etower
T as mea-

sured in the first sampling layer of the forward calorimeters, with
each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event
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measured and simulated distributions. Using this analysis of the
FCal Σ ET distribution, the fraction of the total cross section sam-
pled by the trigger and event selection has been estimated to be
98%, with an uncertainty of 2%. This is similar to estimates given
in a previous ATLAS publication [16]. The FCal Σ ET ranges defined
from this subsample have been found to be stable for the full data
set, both by counting the number of events and by measuring the
average number of reconstructed tracks in each interval. The 20%
of events with the smallest FCal Σ ET are not included in this anal-
ysis, due to the relatively large uncertainties in determining the
appropriate selection criteria.
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azimuthal angle of final-state charged particle tracks and Ψn de-
notes the azimuthal angle of the n-th order reaction plane. In more
peripheral events, Ψ2 is close to ΦRP , the reaction plane angle,
defined by the impact parameter (b⃗, the vector separation of the
barycentres of the two nuclei) and the beam axis (z). In more cen-
tral events, Ψ2 primarily reflects fluctuations in the initial-state
configurations of colliding nucleons. This analysis was confined
to the second Fourier coefficient (n = 2), v2 ≡ ⟨cos [2(φ − ΦRP)]⟩,
where angular brackets denote an average first over particles
within each event relative to the event-wise reaction plane, and
then over events.
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each tower covering 'η × 'φ = 0.1 × 0.1. The tower weights,
wi = wi(φi,ηi), are used to correct for local variations in detector
response. They are calculated in narrow 'η slices ('η = 0.1) over

Fig. 2. Distribution of the azimuthal angle of individual tracks relative to the mea-
sured event plane, in eight centrality intervals. These distributions are meant to
illustrate the observed correlation relative to the event plane, and are not used in
the quantitative estimates of v2. The curve is a fit to 1 + ∑

n 2vn cos(nφ) up to
n = 6.

the full FCal η range in such a way as to remove structures in the
uncorrected φ distributions of Etower

T in every 'η slice. The final
results of this analysis are found to be insensitive to the weighting,
and results obtained with all wi = 1 were consistent with those
reported here, and well within the systematic uncertainties esti-
mated below.

The correlation of individual track azimuthal angles with the
estimated event plane is shown in Fig. 2 for tracks with pT =
1–2 GeV. There is a clear sinusoidal modulation at all centralities.
The modulation is largest in the 20–50% centrality intervals, and
decreases for the more central and peripheral events. In the cen-
trality intervals where the correlation is strongest, the correlation
does not follow a perfect 1 + α cos(2φ) form, indicating signifi-
cant contributions from higher order harmonics. However, in this
Letter we rely on the orthogonality of the Fourier expansion and
do not extract the other coefficients. To verify that this does not
bias the measurement, we have extracted v2 from a fit contain-
ing all Fourier components vn up to n = 6, and found v2 values
consistent with the results extracted below. The odd amplitudes
are found to be consistent with zero, as expected when measuring
odd harmonic functions relative to Ψ2 [17].

The measured values of v2 are generally underestimated be-
cause of the finite experimental resolution in extracting the event
plane angle. The event plane resolution correction factor, R , was
obtained using the subevent technique, also described in Ref. [17].
Two “subevents” are defined in each event, one each in the for-
ward and backward η directions. For the measurement of the event
plane using the FCal, the first sampling layer on the positive η
side was selected as subevent “P ”, with a corresponding subevent
“N” formed for negative η. The resolution correction for the event

in big & small collisions…



each nucleus is a little different
• 200 protons and neutrons move around within the nucleus
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each collision is unique

43

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10

Sensitivity of v
n

on viscosity and fluctuations
B. Schenke, S. Jeon, C. Gale, Phys.Rev.C85, 024901 (2012)
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shape control
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large ε2
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a triangular nucleus?
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deuteron:          1 proton, 1 neutron!
helium 3 (3He): 2 protons, 1 neutron

p+Au d+Au 3He+Au
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another view of the QGP

• what happens to very high energy quarks and 
gluons (jets) as they pass through the QGP?!

• what does the combination of flow and jets tell 
us about how the QGP works?
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Detector Overview sPHENIX Detector Requirements

Hadronic Calorimeter An iron-scintillator sampling calorimeter outside the cryostat. In
order to minimize the mass and bulk, the calorimeter doubles as the flux return for
the solenoid. A thickness of 5lint combined with the electromagnetic calorimeter
in front is sufficient to fully contain the energies of interest, and provide more than
enough iron for the full flux return. The hadronic calorimeter is divided into two
longitudinal compartments consisting of plates running parallel to the beam axis
with scintillator plates interleaved, then read out via embedded wavelength shifting
fiber. The hadronic calorimeter will use the same silicon photomultiplier sensors as
the electromagnetic calorimeter and similar electronics. The coarser segmentation
(Dh ⇥ Df ⇠ 0.1⇥ 0.1) results in an electronic channel count of about 10% that of the
electromagnetic calorimeter.

Readout electronics Bias voltage and analog signal processing for silicon photo-
multipliers in physical proximity to the sensors, with a number of options for the
digitization and buffering using either commercial components or integrated circuits
adapted from existing experimental projects.

Figure 2.1: Cutway view of the detector.

The detector concept that has resulted from these considerations is shown in Figure 2.1
and Figure 2.2 and will be described in detail in Chapter 3. Taking advantage of both
technological developments in the era of RHIC and LHC experiments, and building on
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sPHENIX (coming in 2020)PHENIX

→



investigating initial state of the nucleus?

• electrons are point-like particles
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e-

eRHIC

upgrade to allow 
electrons at RHIC!
timescale ~ 2025



exploring the strong force
• creating a picture of the quark-gluon plasma by using 

the geometry and variations of the nuclei collided at 
RHIC and the LHC!

• very small nuclei are providing a unique control of the 
geometry!

• excited to be able to fully exploit this technique at 
RHIC with p+Au, d+Au, and 3He+Au collisions soon!
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