

The Smallest Drops of the Hottest Matter?
New Investigations at the Relativistic Heavy Ion Collider

Anne M. Sickles
Brookhaven Lecture, March 19, 2014

how hot?

The nucleus

- $>99 \%$ of the mass of atoms, and thus normal matter, is in the nucleus
- composed of protons and neutrons
- the nucleus is held together by the strong force
- one of the 4 fundamental forces
- very strong short range interactions

and what's inside protons and neutrons?

quarks and gluons

fundamental particles which interact via the strong force

confinement

confinement makes the strong force hard to study because the details are locked inside the protons and neutrons

strong force at high temperature

a system that's hot and dense enough for the quarks and gluons to not be confined anymore

nucleus
(many protons \& neutrons)

+ energy

strong force at high temperature

to create a system that's hot and dense enough for the quarks and gluons to not be confined anymore: the quark gluon plasma

Colliders at BNL and CERN

RHIC

0.200 TeV collision energy
 $\mathrm{Au}+\mathrm{Au}$

LHC

2.76 TeV collision energy $\mathrm{Pb}+\mathrm{Pb}$

relativistic heavy ion collisions

Quark Gluon Plasma

lasts for a billionth of a trillionth of a second and billion times smaller than a pixel on an iPhone display

what do we see?

hundreds or thousands of new particles are created in each collision

$$
\mathrm{E}=\mathrm{mc}^{2}
$$

these particles provide the only window into the earlier stages of the collision we look at each collision individually, but measure billions of collisions!

RHIC @ Brookhaven

PHENIX Detector

the aftermath of a collision

the aftermath of a single collision

collision geometry

view: one nuclei going into the screen and one coming out
varying the distance between the nuclei, changes the shape and size of the region where the nuclei overlap

the parts of the nuclei that don't overlap continue on and don't play a role

counting particles

$\phi \quad[\mathrm{rad}]$

collision geometry

more particles come out the long side than the short side!
interactions are important

liquid rather than a gas

steep pressure change

characterizing a liquid

- liquids flow
low viscosity

high viscosity

liquid QGP

QGP flows well!

low viscosity
$\eta / s($ QGP $)<5(1 / 4 \pi)$
string theory calculation: universal minimum

$$
\eta / s>1 / 4 \pi
$$

determining $\boldsymbol{\eta} / \mathbf{s}($ QGP) is very important

shape changes and particle distributions

isolating shape effects

LHC

$15 x$ bigger collision energy

number of produced particles

characterizing particle distributions

v_{2} is the strength of the modulation

v_{2} in heavy ion collisions

quantifying shapes

eccentricity $\left(\varepsilon_{2}\right)$ is related to how elongated any shape is

$$
\varepsilon_{2}=0 \quad \varepsilon_{2}=0.17 \quad \varepsilon_{2}=0.50 \quad \varepsilon_{2}=1
$$

ratio: $\mathrm{V}_{2} / \varepsilon_{2}$

relationship between geometry $\left(\varepsilon_{2}\right)$ and v_{2} is a signature of small viscosity QGP

How Small can the Quark Gluon Plasma Be?

- changing the shape and size of the QGP help to measure the viscosity

- changing the shape and size of the QGP help to measure the viscosity

v2 in $\mathrm{p}+\mathrm{Pb}$ collisions @ the LHC

big vs small collisions

large ε_{2}

small ε_{2}

can we have a collision with large eccentricity, but similar size to $\mathrm{p}+\mathrm{Pb}$?

varying the small nucleus

deuteron (d): 1 proton and 1 neutron

which way does the ellipse go?

in any given event, we can't control it and it's hard to measure for these small systems

looking for v2 in d+Au

also, there are lots of reasons for particles to be correlated

correlations between pairs of particles

 each particle knows something about the collision orientation, but the precision is low

hunting down the signal

correlations between pairs of particles

v_{2} / ε_{2}, expectations in $d+A u$

$\mathrm{V}_{2} / \varepsilon_{2}$

a small QGP?

continuous behavior from big to small collisions

a small QGP?

continuous behavior from big to small collisions

particle distributions reflect initial shape

in big \& small collisions...

each nucleus is a little different

- 200 protons and neutrons move around within the nucleus

each collision is unique

shape control

small ε_{2}

small ε_{3}

large ε_{2}

large ε_{3}

a triangular nucleus?

deuteron:

1 proton, 1 neutron helium $3\left({ }^{3} \mathrm{He}\right)$: 2 protons, 1 neutron

another view of the QGP

PHENIX

sPHENIX (coming in 2020)

- what happens to very high energy quarks and gluons (jets) as they pass through the QGP?
- what does the combination of flow and jets tell us about how the QGP works?
investigating initial state of the nucleus?

- electrons are point-like particles

eRHIC
upgrade to allow electrons at RHIC timescale ~ 2025

exploring the strong force

- creating a picture of the quark-gluon plasma by using the geometry and variations of the nuclei collided at RHIC and the LHC
- very small nuclei are providing a unique control of the geometry
- excited to be able to fully exploit this technique at RHIC with $p+A u, d+A u$, and $3 \mathrm{He}+\mathrm{Au}$ collisions soon!

acknowledgements

- all the members of the PHENIX Collaboration
- my colleagues at BNL
- funded through DOE Office of Science

