

why heavy ion collisions?

- goal: describe and understand QCD at extremely high temperatures
- create matter where protons and neutrons are not the applicable degrees of freedom: Quark Gluon Plasma
- use heavy ions (gold \& lead, ~200 nucleons each) and accelerators to create as big and long lived instance of this matter as possible

why heavy ion collisions?

- goal: describe and understand QCD at extremely high temperatures
- create matter where protons and neutrons are not the applicable degrees of freedom: Quark Gluon Plasma
- use heavy ions (gold \& lead, ~200 nucleons each) and accelerators to create as big and long lived instance of this matter as possible

big
 + speed
 \rightarrow QGP

how big is big enough?

Programs	Laboratories	User Facilities	Universities	Funding Opportunities	Discovery \& Innovation	News	About

Tiny Drops of Hot Quark Soup-How Small Can They Be ?

New analyses of deuteron-gold collisions at RHIC reveal that even small particles can create big surprises.

Read More :

Heavy Ion Programs at RHIC and LHC

2000 - present
7.7-510 GeV collision energy
$\mathrm{AuAu}, \mathrm{dAu}, \mathrm{pp}, \mathrm{CuCu}, \mathrm{UU}, \mathrm{CuAu}$

2010 - present
2.76 TeV collision energy PbPb
5.02 TeV pPb pp @ multiple energies

relativistic heavy ion collisions

relativistic heavy ion collisions

relativistic heavy ion collisions

want to untangle QGP effects from effects of initial nucleus and hadronic matter
the aftermath

the aftermath

charged particle multiplicity

Au+Au

charged particle multiplicity

Au+Au

charged particle multiplicity

Au+Au

charged particle multiplicity

Au+Au

charged particle multiplicity

use the correlations between these particles to understand the QGP

characterizing the QGP

- characterization of the hot dense matter created in heavy ion collisions relies on a number of observables
- here we focus on two:
- hydrodynamic behavior of the QGP
- jet quenching: can't bring in a truly external probe, but we can observe the modification of hard quarks and gluons by the QGP

heavy ion collision

hydrodynamics

large observed anisotropies \rightarrow strong interactions:

- suggests fluid behavior
- larger pressure gradients push more particles out in the x direction than in y

hydrodynamic calculations

hydrodynamics works, v2 sensitive to viscosity

Glauber model: nucleon position fluctuations

Glauber model: nucleon position fluctuations

Glauber model: nucleon position fluctuations

- not necessarily elliptical, smooth, or oriented around impact parameter plane...
- more complicated geometry, leads to more complicated particle distributions

shape can be decomposed

$$
\varepsilon_{n}=\frac{\sqrt{\left\langle r^{n} \cos (n \phi)\right\rangle^{2}+\left\langle r^{n} \sin (n \phi)\right\rangle^{2}}}{\left\langle r^{n}\right\rangle}
$$

ε_{3}
these shapes can then be seen in the observed particle distributions

nucleon positions to energy density

single event initial energy density
nucleons: Gaussians, $\sigma=0.4 \mathrm{fm}$

nucleon positions to energy density

single event initial energy density
nucleons: Gaussians, $\sigma=0.4 \mathrm{fm}$

subnucleonic fluctuations: IP-Glasma model

state of the art hydrodynamic calculations

$\& 3+1 d$ viscous hydrodynamics

quantitative description of $\mathrm{v}_{1}-\mathrm{v}_{5}$ at both RHIC and LHC

p+p collisions

jets in proton-proton collisions

9AILAS GEXPERIMENT

Run Number: 201006, Event Number: 55422459 Date: 2012-04-09 14:07:47 UTC

Au+Au collisions

Au+Au collisions

Au+Au collisions

experimental challenge!

find this...

jet in 200 GeV p-p collision

experimental challenge!

find this...

jet in 200GeV p-p collision
in here!

200 GeV Au-Au collision
two particle correlations

two particle correlations

two particle correlations

two particle correlations

jet quenching

jet quenching

a remaining question

what if the missing jet wasn't the result of jet quenching in the QGP, but rather some feature of the initial state caused it not to be created in the first place?

or
?

saturation of low x gluons

- basic idea: the number of gluons increases quickly with decreasing x. At some point there are so many gluons that the recombination rate becomes significant, saturating the distribution
in a large nucleus in high energy collisions, this happens more readily because the nucleons overlap, increasing the density

some calculations expected that in this scenario what looked like jet quenching could be a feature of the incoming nucleus
a control experiment

a control experiment

pAu
a control experiment

pAu
dAu

something strange--the ridge

STAR PRC 80064912

something strange--the ridge

STAR PRC 80064912

something strange--the ridge

STAR PRC 80064912

hydrodynamics \& correlations

hydrodynamics \& correlations

$$
\begin{aligned}
& \text { ATLAS 10\%-20\%, EP } \\
& \frac{d N}{d \phi} \propto 1+\sum^{n} 2 v_{n} \cos n\left(\phi-\Psi_{n}\right) \\
& \text { pairs } \\
& \frac{d N_{A B}}{d \Delta \phi} \propto 1+\sum^{n} 2 v_{n, A} v_{n, B} \cos (n \Delta \phi)
\end{aligned}
$$

hydrodynamics \& correlations

$$
\begin{gathered}
\frac{d N}{d \phi} \propto 1+\sum^{n} 2 v_{n} \cos n\left(\phi-\Psi_{n}\right) \\
\text { pairs } \\
\frac{d N_{A B}}{d \Delta \phi} \propto 1+\sum^{n} 2 v_{n, A} v_{n, B} \cos (n \Delta \phi)
\end{gathered}
$$

ridge: v_{N} \& two particle correlations

ridge explained as initial state geometry + hydrodynamics

7 TeV pp collisions

7 TeV pp collisions

(b) CMS MinBias, $1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$
multiplicity

7 TeV pp collisions

(b) CMS MinBias, $1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

(d) $C M S N \geq 110,1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

and in pPb

7 TeV proton-proton collisions

(d) CMS N $\geq 110,1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

5 TeV proton-Pb collisions

and in pPb

7 TeV proton-proton collisions
(d) CMS N $\geq 110,1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

5 TeV proton-Pb collisions

but if the ridge in nucleus-nucleus collisions is due to hydrodynamic flow what's it doing in $\mathrm{p}-\mathrm{p}$ and $\mathrm{p}-\mathrm{Pb}$ collisions?
CMS JHEP 1009 (2010) 091, PLB 718795

ridge in $\mathrm{pp} / \mathrm{pPb}$ from color glass condensate?

Color Glass Condensate: calculational framework for saturation
(d) $\mathrm{CMS} \mathrm{N} \geq 110,1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

ridge in $\mathrm{pp} / \mathrm{pPb}$ from color glass condensate?

Color Glass Condensate: calculational framework for saturation
(d) $\mathrm{CMS} \mathrm{N} \geq 110,1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

ridge in $\mathrm{pp} / \mathrm{pPb}$ from color glass condensate?

Color Glass Condensate: calculational framework for saturation
(d) $\mathrm{CMS} \mathrm{N} \geq 110,1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{P}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

ridge in $\mathrm{pp} / \mathrm{pPb}$ from color glass condensate?

Color Glass Condensate: calculational framework for saturation
(d) CMS N $\geq 110,1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

0

good description of the data in pp \& pPb

a closer look at pPb

a closer look at pPb

$\mathrm{v}_{2} \& \mathrm{v}_{3}$ in pPb collisions

$\mathrm{v}_{2} \& \mathrm{v}_{3}$ in pPb collisions

very similar to AA results

what is the origin of the ridge in pPb ?

geometry \& flow as in AA collisions or CGC correlations

RHIC had dAu data at 200 GeV $25 x$ smaller collision energy than the LHC

PHENIX

- charged hadrons
- $|\eta|<0.35$
- $|\Delta \eta|<0.7$
- centrality determined by charged particles in the Au going direction: $3<|\eta|<4$
- 1.6B minimum bias events

two particle correlations in dAu

two particle correlations in dAu

two particle correlations in dAu

centrality dependence

rapidity separated correlations

Muon Piston Calorimeters

both d-going \& Augoing directions

$$
3<|\eta|<4
$$

Central Magnet

Side View

long range correlations in dAu

PHOBOS PRC72 031901

long range correlations in dAu

PHOBOS PRC72 031901

long range correlations in dAu

midrapidity v_{2} results

midrapidity v_{2} results

midrapidity v_{2} results

v_{2} in dAu compared to hydro. calculations

$v_{2} d A u \& p P b$

eccentricity

$$
\varepsilon_{n}=\frac{\sqrt{\left\langle r^{n} \cos (n \phi)\right\rangle^{2}+\left\langle r^{n} \sin (n \phi)\right\rangle^{2}}}{\left\langle r^{n}\right\rangle}
$$

Glauber Monte Carlo used to generate single event initial energy density distributions used to determined $<\varepsilon_{n}>$ values for event selections

pA, small ε_{2}

dA , large ε_{2}

v_{2} scaled by eccentricity, $\mathrm{dAu} \& \mathrm{pPb}$

$$
\varepsilon_{n}=\frac{\sqrt{\left[r^{n} \cos (n \phi)\right)^{2}+\left\langle r^{n} \sin (n \phi)\right)^{2}}}{\left\langle r^{n}\right)^{2}}
$$

pA , rounder, small ε_{2}

dA, elongated, large ε_{2}

$\mathrm{dAu}, \mathrm{pPb}, \mathrm{AuAu} \& \mathrm{PbPb}$

$$
\varepsilon_{3} \rightarrow \mathrm{v}_{3} ?
$$

$\varepsilon_{n}=\frac{\sqrt{\left\langle r^{n} \cos (n \phi)\right\rangle^{2}+\left\langle r^{n} \sin (n \phi)\right\rangle^{2}}}{\left\langle r^{n}\right\rangle}$
no significant v3 in dAu collisions at PHENIX

$$
\varepsilon_{3} \rightarrow \mathrm{~V}_{3} ?
$$

$$
\varepsilon_{n}=\frac{\sqrt{\left\langle r^{n} \cos (n \phi)\right\rangle^{2}+\left\langle r^{n} \sin (n \phi)\right\rangle^{2}}}{\left\langle r^{n}\right\rangle}
$$

no significant v3 in dAu collisions at PHENIX
question: can we induce a v_{3} with ${ }^{3} \mathrm{He}+\mathrm{Au}$ collisions?

Tentative Run Schedule for RHIC

Tentative Run Schedule for RHIC

AA collisions: quenching

 depends on L
more quenching

AA collisions: quenching depends on L

could something similar happen in dA?

less quenching
more quenching

AA collisions: quenching depends on L
less quenching
more quenching
could something similar happen in dA?
geometrical dependence might be observable even though we know the overall level of quenching is small in dAu
recent calculations for pPb (Zhang \& Liao, 1311.5463), but any effect should be larger in dA than in pA

conclusions

conclusions

- two particle correlations have led to discovery of ridge in $\mathrm{pp}, \mathrm{pPb}$ \& dAu systems

conclusions

- two particle correlations have led to discovery of ridge in $\mathrm{pp}, \mathrm{pPb}$ \& dAu systems
- surprising scaling between eccentricity and v_{2} from $\mathrm{pPb} \& \mathrm{dAu}$ to AuAu \& PbPb
- clear illustration of the synergy between RHIC \& LHC
- extremely fortuitous to have dAu data at RHIC
- looking forward to pA, dA, ${ }^{3} \mathrm{HeA}$ at RHIC in 2015-16 will determine the connection between initial geometry and final state correlations

scaling with overlap area?

$$
\mathrm{S}=4 \pi \sqrt{\sigma_{x}}{ }^{2} \sigma_{y}^{2}-\sigma_{x y}^{2}
$$

p_{t} integrated v_{2} data found to scale in heavy ions with $1 / \mathrm{S} \mathrm{dN}_{\mathrm{ch}} / \mathrm{d} \mathrm{\eta}$ over wide collision energy

$\varepsilon_{2} \& \varepsilon_{3}:(p, d, 3 \mathrm{He})+A$

v_{3} at RHIC?

remaining jet effects?

issue: short range effects from centrality dependent jet modifications could modify near side correlations within small $|\Delta \eta|$

remaining jet effects?

> issue: short range effects from centrality dependent jet modifications could modify near side correlations within small $|\Delta \eta|$

- vary the minimum $|\Delta \eta|$ cut from 0.36 to 0.60
- look at the charge sign dependence:
- jet correlations are
enhanced for opposite sign pairs and suppressed for same sign pairs
- further studying with event generators

remaining jet effects?

issue: short range effects from centrality dependent jet modifications could modify near side correlations within small $|\Delta \eta|$

PHENIX: 1303.1794
vary the minimum $|\Delta \eta|$ cut from 0.36 to 0.60

- look at the charge sign dependence:
- jet correlations are enhanced for opposite sign pairs and suppressed for

- further studying with event generators
pPb vs dAu

pPb vs dAu

pPb vs dAu

$d+A$ central collisions have much larger ε_{2} than $p+A$

extract v_{2} via factorization

$$
\mathrm{c} 2\left(\mathrm{p}_{\mathrm{T}, \mathrm{a}}, \mathrm{p}_{\mathrm{T}, \mathrm{~b}}\right)=\mathrm{v} 2\left(\mathrm{p}_{\mathrm{T}, \mathrm{a}}\right) \mathrm{v} 2\left(\mathrm{p}_{\mathrm{T}, \mathrm{~b}}\right)
$$

\rightarrow factorization assumption: two particle modulation is the product of the single particle anisotropies, no inconsistencies with this assumption found

Hijing expectations?

- HIJING has no flow, no CGC
- perform the same study with HIJING as in the data

HIJING c2 consistent with 0 , much smaller than in data

