Baryons & Evidence for Direct Production in Relativistic Heavy Ion Collisions

Baryons & Evidence for Direct Production in Relativistic Heavy Ion Collisions

Baryons & Evidence for Direct Production in Relativistic Heavy Ion Collisions

Anne M. Sickles February 14, 2010

some of this work in collaboration with: Stan Brodsky, Francois Arleo and D.S. Hwang Phys. Lett. B668 111 (2008) & arXiv: 0911.4604

incoming nuclei

incoming nuclei

incoming nuclei

2

hot matter

illustration: S. Bass

incoming nuclei hot hadronic matter gas

• RHIC: ion-ion collisions at up to $\sqrt{s_{NN}}=200 \text{GeV}$

- RHIC: ion-ion collisions at up to $\sqrt{s_{NN}}=200 \text{GeV}$
- also p+p collsions, crucial baseline

2

Au+Au collision

central Au+Au:

large excess over binary scaled p+p

central Au+Au: large excess over binary scaled p+p

excess: 221±23±18MeV

central Au+Au: large excess over binary scaled p+p

excess: 221±23±18MeV

consistent with initial T ~ 300-600MeV

the matter flows

$$rac{dN}{d(\Psi-\phi)} \propto 1+2v_2\cos(\Psi-\phi)+\dots$$

the matter flows

$$rac{dN}{d(\Psi-\phi)} \propto 1 + 2v_2\cos(\Psi-\phi) + \dots$$

the matter flows

$$rac{dN}{d(\Psi-\phi)} \propto 1 + 2v_2\cos(\Psi-\phi) + \dots$$

well described by hydrodynamics with small viscosity

the partons flow

 $KE_T = m_T - m$

the partons flow

 $KE_T = m_T - m$

valence quark flow

PHENIX PRL 98 162301 (2007)

valence quark flow

PHENIX PRL 98 162301 (2007)

valence quark flow

PHENIX PRL 98 162301 (2007)

valence quark flow

PHENIX PRL 98 162301 (2007)

basic idea: valence quarks coalesce to form final state hadrons

Fries et al., Hwa et al., Ko et al.

basic idea: valence quarks coalesce to form final state hadrons

Fries et al., Hwa et al., Ko et al.

basic idea: valence quarks coalesce to form final state hadrons

Fries et al., Hwa et al., Ko et al.

basic idea: valence quarks coalesce to form final state hadrons

Fries et al., Hwa et al., Ko et al.

basic idea: valence quarks coalesce to form final state hadrons

- quark momenta add:
 - $p_T(hadron) > p_T(quark)$
 - baryons get an extra boost→extra quark

Fries et al., Hwa et al., Ko et al.

basic idea: valence quarks coalesce to form final state hadrons

- quark momenta add:
 - $p_T(hadron) > p_T(quark)$
 - baryons get an extra boost→extra quark
- quark correlations amplified in hadrons:
 - e.g. flow

Fries et al., Hwa et al., Ko et al.

recombination: when?

cartoon: R. Fries Anne M. Sickles, February 14, 2010

recombination: when?

high phase space density 10 1/b¹ 10⁻² 10⁻³ 10⁻⁴ 10⁻⁴ 10⁻⁴ 10⁻⁵ 10⁻⁶ large system, low p_T lacksquarerecombination jet fragmentation 10-7 10⁻⁸ 2 3 4 5 9 7 8 6 PT (GeV)

10

recombination: when?

- high phase space density
 - large system, low p_T
- exponential quark p_T spectrum disfavors fragmentation
 - high p_T hard power law distribution disfavors recombination

baryons via fragmentation

baryons via fragmentation

fragmentation: parton A→N hadrons for each hadron: p_{T,N} < p_{T,A}

EPJ 17 207 (2000)

EPJ 17 207 (2000)

baryon production difficult in fragmentation

- scaling deviations: $p_T \sim 3-4$ GeV/c
 - \rightarrow end recombination dominance

some p/pbar excess remains to high p_T

some p/pbar excess remains to high p_T

high p_T particle production

p+p collisions

Parton Distribution Functions: Measured in Deep Inelastic Scattering

Hard Scattering Cross Section: Calculated with pQCD

Fragmentation into Hadrons: Measured in e+e- Collisions

high p_T particle production

Au+Au collisions

Parton Distribution Functions: Measured in Deep Inelastic Scattering

Hard Scattering Cross Section: Calculated with pQCD

> Parton Medium Interactions

Fragmentation into

Hadrons: Measured in e+e- Collisions

y: control measurement

no color charge \rightarrow insensitive to produced mat R_{AA}(p_T<14GeV/c) consistent with unity

π^0 : light meson

PHENIX, PLB 649 359 2007

PHENIX, PLB 649 359 2007

direct proton production?

Brodsky & AMS PLB 668 111 (2008)

• color singlet proton directly produced within hard scattering

Brodsky & AMS PLB 668 III (2008)

- color singlet proton directly produced within hard scattering
- no energy wasted in fragmentation

Brodsky & AMS PLB 668 111 (2008)

- color singlet proton directly produced within hard scattering
- no energy wasted in fragmentation
- small color neutral protons: color transparent

Brodsky & AMS PLB 668 III (2008)

- color singlet proton directly produced within hard scattering
- no energy wasted in fragmentation
- small color neutral protons: color transparent
 - proton exits collision region without interacting, like a direct γ

Brodsky & AMS PLB 668 III (2008)

- color singlet proton directly produced within hard scattering
- no energy wasted in fragmentation
- small color neutral protons: color transparent
 - proton exits collision region without interacting, like a direct $\boldsymbol{\gamma}$
 - $R_{AA}(proton) > R_{AA}(\pi)$

Brodsky & AMS PLB 668 III (2008)

 colored partons lose a lot of energy

- colored partons lose a lot of energy
- suppresses baryons from fragmentation

- colored partons lose a lot of energy
- suppresses baryons from fragmentation
- direct processes unsuppressed

- colored partons lose a lot of energy
- suppresses baryons from fragmentation
- direct processes unsuppressed
 - relative contributions enhanced

$$\frac{d\sigma}{d^3 p/E}(pp \to HX) = \frac{F(x_T, \theta_{cm})}{p_T^n} \qquad x_T = \frac{2p_T}{\sqrt{s}}$$

 n related to "twist", number of participants, of the hard scattering

$$\frac{d\sigma}{d^3 p/E}(pp \to HX) = \frac{F(x_T, \theta_{cm})}{p_T^n} \qquad x_T = \frac{2p_T}{\sqrt{s}}$$

- n related to "twist", number of participants, of the hard scattering
- leading twist: $g+g \rightarrow g+g$, n=4

$$\frac{d\sigma}{d^3 p/E}(pp \to HX) = \frac{F(x_T, \theta_{cm})}{p_T^n} \qquad x_T = \frac{2p_T}{\sqrt{s}}$$

- n related to "twist", number of participants, of the hard scattering
- leading twist: $g+g \rightarrow g+g$, n=4
- higher twist: $qq \rightarrow p+qbar$, n=8

$$\frac{d\sigma}{d^3 p/E}(pp \to HX) = \frac{F(x_T, \theta_{cm})}{p_T^n} \qquad x_T = \frac{2p_T}{\sqrt{s}}$$

- n related to "twist", number of participants, of the hard scattering
- leading twist: $g+g \rightarrow g+g$, n=4
- higher twist: $qq \rightarrow p+qbar$, n=8
- n increased somewhat, running coupling, evolution of PDFs & FFs

more quantitative: $n_{eff}(x_T)$

 physically motivated way to compare cross sections across collision energies

well, what do you expect?

well, what do you expect? $\Delta = n^{exp} - n^{NLO}$

well, what do you expect?

 $\Delta = n^{exp} - n^{NLO}$

heavy ion collisions, π^{\pm}

data from: STAR PLB 655 104 (2007)

heavy ion collisions, π^{\pm}

data from: STAR PLB 655 104 (2007)

heavy ion collisions, π^{\pm}

n_{eff}(pions) increases slightly with centrality

data from: STAR PLB 655 104 (2007)

Anne M. Sickles, February 14, 2010

data from: STAR PLB 655 104 (2007)

Anne M. Sickles, February 14, 2010

data from: STAR PLB 655 104 (2007)

• n higher for p and pbar than pions

data from: STAR PLB 655 104 (2007)

- n higher for p and pbar than pions
- n increases with centrality

data from: STAR PLB 655 104 (2007)

- n higher for p and pbar than pions
- n increases with centrality
- independent of charge

data from: STAR PLB 655 104 (2007)

tests: strangeness

 can also make strange baryons: signature balancing strangeness will be on in recoil jet

- can also make strange baryons: signature balancing strangeness will be on in recoil jet
- in contrast, in hard fragmentation picture: balancing strangeness will be close, in same jet

tests: energy dependence

- p/pbar differences increase with decreasing \sqrt{s}
- p/pbar triggered correlations (separately) can help determine direct component if incoming nucleus probed in valence region

tests: jet-proton correlations

tests: jet-proton correlations U U d quark

• jet balances proton momentum

tests: jet-proton correlations

- jet balances proton momentum
- measure z = p_{T,proton}/p_{T,jet}

tests: jet-proton correlations

- jet balances proton momentum
- measure z = p_{T,proton}/p_{T,jet}
 - expect excess high z protons in heavy ion collisions compared to p+p

higher twist in $\boldsymbol{\pi}$ production

- this mechanism can also occur for meson production:
 - e.g. ug->пи
- proton production via higher twist expected to be more important because of the suppression of baryon production in fragmentation
- suppressed with large p_T and \sqrt{s}

higher twist in $\boldsymbol{\pi}$ production

- this mechanism can also occur for meson production:
 - e.g. ug->пи
- proton production via higher twist expected to be more important because of the suppression of baryon production in fragmentation
- suppressed with large p_T and \sqrt{s}

higher twist in $\boldsymbol{\pi}$ production

- this mechanism can also occur for meson production:
 - e.g. ug->пи
- proton production via higher twist expected to be more important because of the suppression of baryon production in fragmentation
- suppressed with large p_T and \sqrt{s}

• low & intermediate p_{T} : seems naturally described by recombination

- low & intermediate p_{T} : seems naturally described by recombination
- intermediate & high p_T : evidence for higher twist

- low & intermediate p_{T} : seems naturally described by recombination
- intermediate & high p_T : evidence for higher twist
 - hot nuclear matter \rightarrow study rare QCD processes!

- low & intermediate p_{T} : seems naturally described by recombination
- intermediate & high p_T : evidence for higher twist
 - hot nuclear matter \rightarrow study rare QCD processes!
 - quantifying these processes important for measuring QGP properties as well
baryons at RHIC

- low & intermediate p_{T} : seems naturally described by recombination
- intermediate & high p_T : evidence for higher twist
 - hot nuclear matter \rightarrow study rare QCD processes!
 - quantifying these processes important for measuring QGP properties as well
- identified particle measurements important

baryons at RHIC

- low & intermediate p_{T} : seems naturally described by recombination
- intermediate & high p_T : evidence for higher twist
 - hot nuclear matter \rightarrow study rare QCD processes!
 - quantifying these processes important for measuring QGP properties as well
- identified particle measurements important
 - strong motivation for RHIC energy scan at moderate center of mass (40–200GeV) p+p & heavy ions

baryons at RHIC

- low & intermediate p_{T} : seems naturally described by recombination
- intermediate & high p_T : evidence for higher twist
 - hot nuclear matter \rightarrow study rare QCD processes!
 - quantifying these processes important for measuring QGP properties as well
- identified particle measurements important
 - strong motivation for RHIC energy scan at moderate center of mass (40–200GeV) p+p & heavy ions
 - higher twist effects should grow at lower collision energies

still unclear why $R_{AA}(p) > R_{AA}(\pi)$

idea: jet parton scatters on medium parton and changes flavor

$$q + \overline{q} \Leftrightarrow g + g$$
$$q + g \Leftrightarrow g + q$$

Ko et al. PRC 75 051901 (2007) Liu & Fries PRC77 054902 (2008)

Anne M. Sickles

idea: jet parton scatters on medium parton and changes flavor

$$q + \overline{q} \Leftrightarrow g + g$$
$$q + g \Leftrightarrow g + q$$

parton RAA

Ko et al. PRC 75 051901 (2007) Liu & Fries PRC77 054902 (2008)

Quark Matter 2009

Anne M. Sickles

$$q + \overline{q} \Leftrightarrow g + g$$
$$q + g \Leftrightarrow g + q$$

Ko et al. PRC 75 051901 (2007) Liu & Fries PRC77 054902 (2008)

Anne M. Sickles

$$q + \overline{q} \Leftrightarrow g + g$$
$$q + g \Leftrightarrow g + q$$

Ko et al. PRC 75 051901 (2007) Liu & Fries PRC77 054902 (2008)

Anne M. Sickles

$$q + \overline{q} \iff g + g$$
$$q + g \iff g + q$$

Ko et al. PRC 75 051901 (2007) Liu & Fries PRC77 054902 (2008)

Quark Matter 2009

Anne M. Sickles

Ko et al. PRC 75 051901 (2007) Liu & Fries PRC77 054902 (2008)

Anne M. Sickles

• could increase $R_{AA}(protons)/R_{AA}(\pi)$, but not beyond I

Ko et al. PRC 75 051901 (2007) Liu & Fries PRC77 054902 (2008)

Anne M. Sickles

- could increase $R_{AA}(protons)/R_{AA}(\pi)$, but not beyond 1
 - recombination at high pT?

Anne M. Sickles

- could increase $R_{AA}(protons)/R_{AA}(\pi)$, but not beyond 1
 - recombination at high pT?
- potentially extremely interesting: sensitive to mean free path

Ko et al. PRC 75 051901 (2007) Liu & Fries PRC77 054902 (2008)

- could increase $R_{AA}(protons)/R_{AA}(\pi)$, but not beyond 1
 - recombination at high pT?
- potentially extremely interesting: sensitive to mean free path
 - however need to understand FF

Ko et al. PRC 75 051901 (2007) Liu & Fries PRC77 054902 (2008)

still unclear why $R_{AA}(p) > R_{AA}(\pi)$

• decreasing proton v2? increasing direct component?

baryon/anti-baryon ratio

baryon/anti-baryon ratio

Anne M. Sickles, February 14, 2010

Anne M. Sickles, February 14, 2010

x_T scaling: photons

 $E\frac{d^3\sigma}{dn^3} = \frac{1}{\sqrt{s^{n(x_T,\sqrt{s})}}} G(x_T)$

- good scaling over a wide range of x_T with n=5
 - 23 < 1800 GeV

nucl-ex/0611008

Anne M. Sickles, February 14, 2010

and protons...

- $R_{AA}(p,pbar) > R_{AA}(\pi)$
- even @ high p_T, baryon/meson differences persist!
- inconsistent with parton energy loss & vacuum fragmentation

and protons...

- $R_{AA}(p,pbar) > R_{AA}(\pi)$
- even @ high p_T, baryon/meson differences persist!
- inconsistent with parton energy loss & vacuum fragmentation

are baryons coming from somewhere else?

QGP as filter

