Measurement of Double Longitudinal Spin Asymmetry in Heavy Flavor Production at PHENIX

Xiaorong Wang New Mexico State University

Outline

- Introduction
- The PHENIX Experiment
- Heavy Flavor A_{LL} at 200GeV

-- J/Ψ

- -- μ^{-} from heavy flavor decay
- Summary and Outlook

RHIC as a polarized p+p collider

The PHENIX detectors

•Central Arm Tracking |η| < 0.35, x_F ~ 0 •Drift Chamber (DC) •momentum measurement Pad Chambers (PC) •pattern recognition, 3d space point •Time Expansion Chamber (TEC) •additional resolution at high pt Central Arm Calorimetry •PbGI and PbSc Very Fine Granularity •Tower $\Delta \phi x \Delta \eta \sim 0.01 x 0.01$ •Trigger Central Arm Particle Id •RICH •electron/hadron separation •TOF •π/K/p identification •Global Detectors (Luminosity, Trigger) •BBC $3.0 < |\eta| < 3.9$ Quartz Cherenkov Radiators •ZDC/SMD (Local Polarimeter) •Forward Hadron Calorimeter •Forward Calorimetry 3.1 < |η| < 3.7 •MPC •PbWO₄ Crystal •Forward Muon Arms South arm: -2.2 < η < -1.2 North arm: $1.2 < \eta < 2.4$

October 10, 2008

Heavy Quark Production at PHENIX

Gluon Fusion

J/Psi: NRQCD and PHENIX data

Theoretical predictions of J/ Ψ production at RHIC are in good agreement with the PHENIX data: COM process dominant

- PRD 68 (2003) 034003 G. Nayak, M. Liu, F. Cooper
- PRL 93 (2004) 171801 F. Cooper, M. Liu, G. Nayak

kT factorization & CSM ... PRD 77 (2008) 05416 S.Baranov, A.Szczurek

October 10, 2008

Not very sensitive to "fragmentation" processes

SPIN2006 Ming X. Liu

J/Psi A_{LL} Measurement

- Inclusive J/Psi events
- Background estimation
 - S/B ~ 6
- Fill-by-fill, beam pol from CNI
- GL1P scalers for ReLumi

BBC_in

$$A_{LL}^{incl(BG)} = \frac{1}{\langle P_B \rangle \langle P_Y \rangle} \frac{N^{++} - R \cdot N^{+-}}{N^{++} + R \cdot N^{+-}}$$

$$A_{LL}^{J/Psi} = \frac{A_{LL}^{incl} - f_{BG} \cdot A_{LL}^{BG}}{1 - f_{BG}}$$
$$\delta A_{LL}^{J/Psi} = \frac{\sqrt{(\delta A_{LL}^{incl})^2 + f_{BG}^2 \cdot (\delta A_{LL}^{BG})^2}}{1 - f_{BG}}$$

October 10, 2008

$J/\Psi A_{LL}$ from Run6

10

$J/\Psi A_{LL}$ from Run5+6

October 10, 2008

Open Heavy Flavor

Open Heavy Quark Production: hard fragmentation function

Open Heavy Quark ALL Calculations

LO calculations

- Phys. Lett. B 246, 523 (1990) A.P. Contogouris et al.
- Phys. Lett. B 324, 209 (1994) M. Karliner and R.W. Robinet(*)

NLO calculations

PRD 67, 034010 (2003) I.Bojak and M. Stratmann(**)

October 10, 2008

Open heavy flavor via semi-leptonic decays

A_{LL} vs. pT through electron channel

Muon Track Candidates in the Muon Spectrometer

1.2 < |η| < 2.4
Δφ=2π
P>2GeV/c
Candidate Tracks:
Prompt Muons
Punch-through hadrons
Stopped hadrons
Decay muons

October 10, 2008

VS. p_T

Current measurements are statistically limited. The can not constrain the gluon polarization.

About A_{LL} NLO/LO

□ At central arm y =0

A_L vs. p_T in the forward and backward rapidities

Import for future W measurements

Projection for Run9

Forward Silicon VerTeX Detector for PHENIX

Four Layers of silicon mini-strips, covering Muon Arms

JUIIZO

- 1.2 < η < 2.2
- 1.1 million mini-strips
- Strip size: 75 μm in r and 3.75 o in ϕ

October 10, 2008

With FVTX, measurements will put constrain on the gluon polarization

October 10, 2008

Summary and Outlook

- First measurement of gluon polarization with J/Ψ and high pT single muons and electrons in polarized p+p collisions at 200GeV
- Promising heavy flavor spin measurement with FVTX upgrade
- NLO calculations needed for PHENIX accpt.

October ..., _...

Prompt muons from open heavy flavor decay

Cartoon depiction of the relative flux of particles in the PHENIX muon arm

Gluon polarization

Polarized hadron collision

double longitudinal spin asymmetry

- leading-order gluon measurement
 - direct-photon production
 - heavy-flavor production

Proton Spin Structure at PHENIX

First moment of the Spin dependent Gluon distribution ΔG	Transverse spin physics	Flavor separation of the quark and anti-quark sea
Inclusive Hadron Production $A_{LL}(gg,gq \rightarrow h+X)$ Prompt Photon $A_{LL}(gq \rightarrow \gamma + X)$ Heavy Flavors $A_{LL}(gg \rightarrow c\overline{c}, b\overline{b} + X)$	Single Spin Asymmetries A_N Transversity δq π^+, π^- Interference fragmentation : $A_T (p_\perp p \rightarrow (\pi^+, \pi^-) + X)$ Drell Yan A_{TT}	W Production $A_L(u + \overline{d} \rightarrow W^+ \rightarrow \ell^+ + \nu_1)$ $A_L(\overline{u} + d \rightarrow W^- \rightarrow \ell^- + \overline{\nu}_1)$
Versus	Versus Versus	Versus

October 10, 2008

PHENIX Muon Detectors

Muon arms

- 1.2<|**η**|<2.4
- Δφ=2π
- P>2GeV/c
- Triggers
- "Muons"
 - Stopped hadrons
 - Light meson decays
 - Heavy decays
 - J/Psi
 - Open charm

NLO aLL

Raw Asymmetries fill-by-fill

Inclusive J/Psi

■ |M -M_{Jpsi}|<2 sigma

■ Background (µ⁺µ⁻)
 ■ 1.8< M < 2.5

October 10, 2008