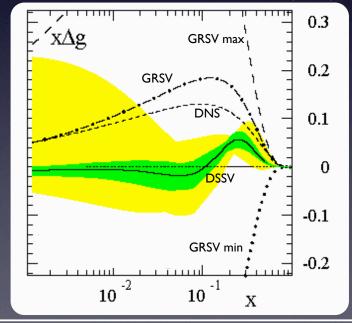
Recent STAR Results from Neutral Pion Production in Polarized p+p Collisions at $\sqrt{s} = 200$ GeV at RHIC.

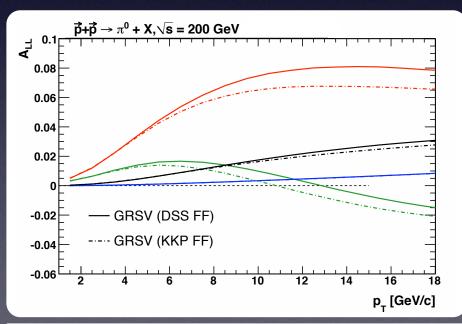
Alan Hoffman for the STAR Collaboration

Motivation

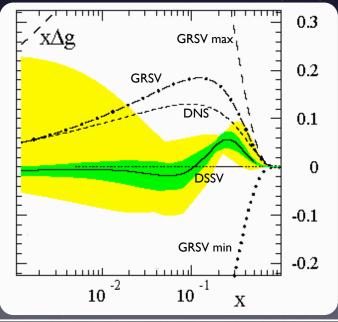

How is the spin of the proton distributed?

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma(Q^2) + \Delta g(Q^2) + L_q(Q^2) + L_g(Q^2)$$

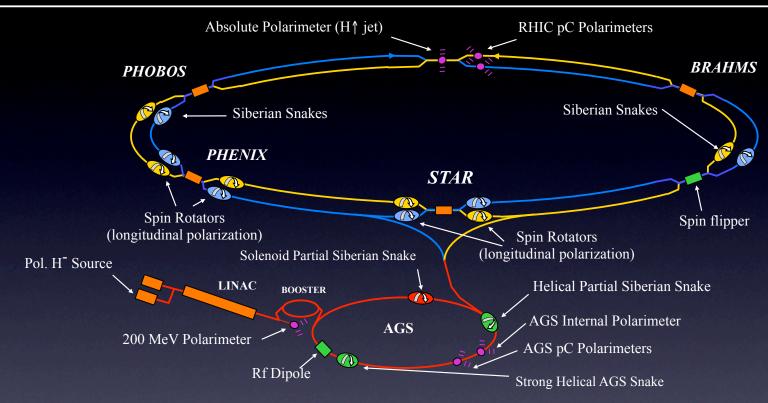
$$\Delta g(x,Q^2) = g^+(x,Q^2) - g^-(x,Q^2)$$


de Florian et al., PRL 101, 072001 (2008)

Polarizad pp Callisia


Accessing ΔG from A_{LL}

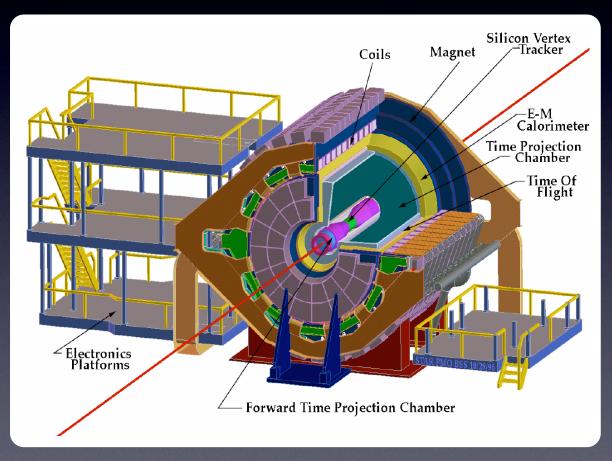
- Polarized p+p collisions give access to the gluon polarization through the observable A_{LL}
- A_{LL} predictions for neutral pion production dependent on fragmentation functions.



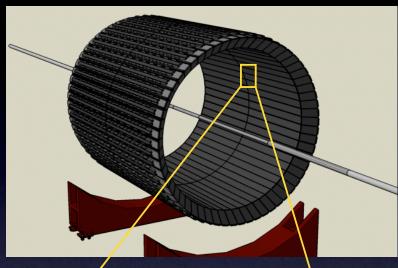
$$A_{LL} = \sum_{f_A f_B f_C} \frac{\Delta f_A \Delta f_B \times \Delta \sigma_{AB \to CX} \times D_C}{f_A f_B \times \sigma_{AB \to CX} \times D_C}$$

de Florian et al., PRL 101, 072001 (2008)

The RHIC Complex


Two rich QCD programs: spin and heavy ion

- Bunch-to-bunch spin control
- Siberian Snakes
- Spin rotators
- Polarimetry


STAR Detector

Notable Subsystems:

- Beam Beam Counters
 - Triggering and luminosity
- TPC
 - Central tracking and vertexing
- Barrel EMC
 - Triggering and final state reconstruction

Barrel EMC

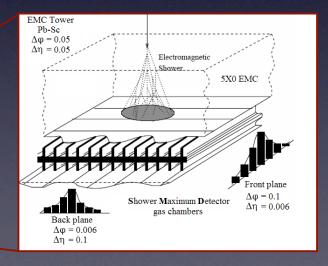
193.04mm

r = 2629 59

finear bearing track

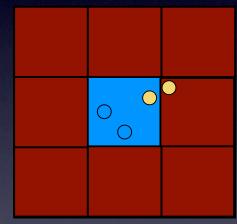
69 35mm

linear bearing carriage

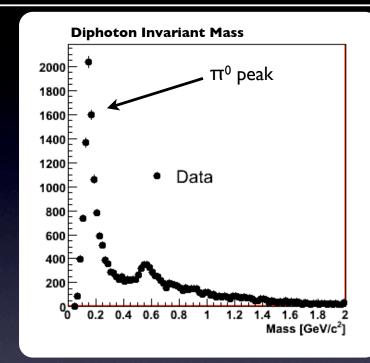

back plate

compression plate

compression plate

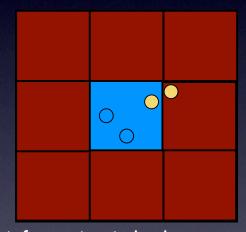

set a set

- Lead-scintillator sampling calorimeter (\sim 20 X_0)
- 2TT azimuthal coverage
- -1 < η < 1 (Run 6)
- Segmented into 4800 towers, .05 x .05 in η - φ
- Shower Max Detector located at a depth of \sim 5 X_0

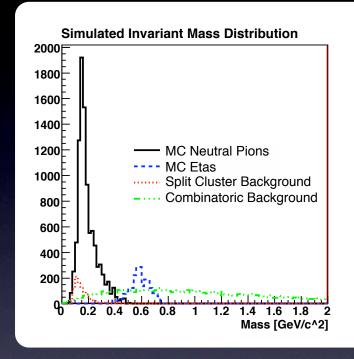

Pion Reconstruction

- New trigger for run 6. Specifically designed to find more π^0 s.
- 2 stage trigger: High Tower + Trigger Patch.
- ~3.7 pb⁻¹ Triggered Luminosity

Event Selection

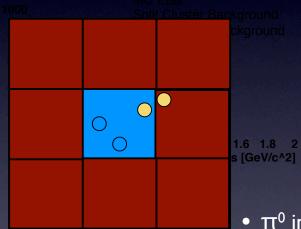

- Found Vertex
- Require good SMD information in both planes
- Veto calorimeter hits with a charged track pointing to tower
- π^0 candidates w/ P_T above 5.2 GeV/c

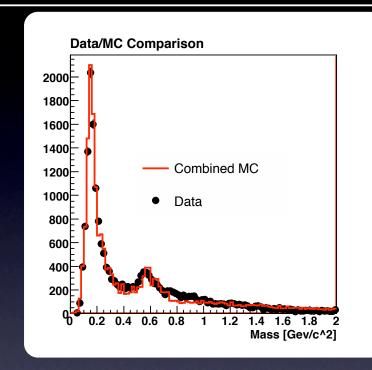
- π^0 invariant mass: $M^2_{inv} = 2E_1E_2(1 \cos\theta)$
- $-0.95 \le \eta \le 0.95$
- $0.08 \text{ GeV/c}^2 \le M_{inv} \le 0.25 \text{ GeV/c}^2$
- $Z_{YY} \leq 0.8$
- π^0 mass spectrum well described by MC simulation of single π^0 , single η , and background (more later)


Pion Reconstruction

- New trigger for run 6. Specifically designed to find more π^0 s.
- 2 stage trigger: High Tower + Trigger Patch.
- ~3.7 pb⁻¹ Triggered Luminosity

- Found Vertex
- Require good SMD information in both planes
- Veto calorimeter hits with a charged track pointing to tower
- π^0 candidates w/ P_T above 5.2 GeV/c


- π^0 invariant mass: $M^2_{inv} = 2E_1E_2(1 \cos\theta)$
- $-0.95 \le \eta \le 0.95$
- $0.08 \text{ GeV/c}^2 \le M_{inv} \le 0.25 \text{ GeV/c}^2$
- $Z_{YY} \leq 0.8$
- π^0 mass spectrum well described by MC simulation of single π^0 , single η , and background (more later)

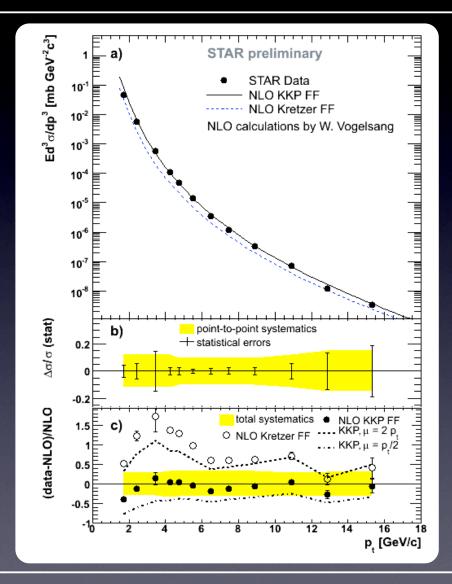

ata/MC (

0.2 0.4

Pion Reconstruction

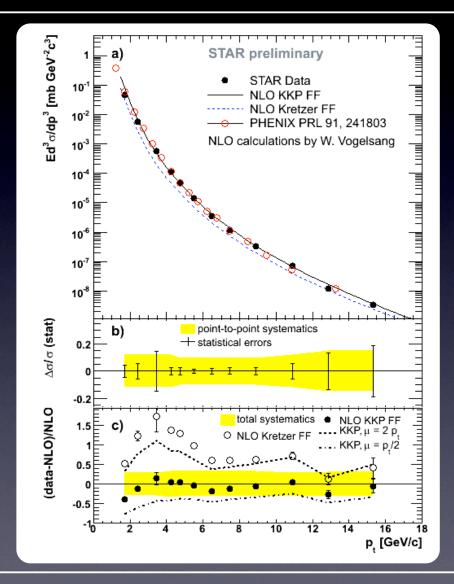
- New trigger for run 6. Specifically designed to find more π^0 s.
- 2 stage trigger: High Tower + Trigger Patch.
- ~3.7 pb⁻¹ Triggered Luminosity

Event Selection


- Found Vertex
- Require good SMD information in both planes
- Veto calorimeter hits with a charged track pointing to tower
- π^0 candidates w/ P_T above 5.2 GeV/c

- π^0 invariant mass: $M^2_{inv} = 2E_1E_2(1 \cos\theta)$
- $-0.95 \le \eta \le 0.95$
- $0.08 \text{ GeV/c}^2 \le M_{inv} \le 0.25 \text{ GeV/c}^2$
- $Z_{YY} \leq 0.8$
- π^0 mass spectrum well described by MC simulation of single π^0 , single η , and background (more later)

ata/MC (


0.2 0.4

2005 π⁰ Cross Section

- L_{sampled}: 0.4 pb⁻¹ (HT triggers)
 44mb⁻¹ (MB)
- $0.1 \le \eta \le 0.9$; $0 \le \varphi \le 2\pi$
- Systematics dominated by 5% uncertainty in BEMC energy scale
- Good agreement to NLO pQCD predictions.

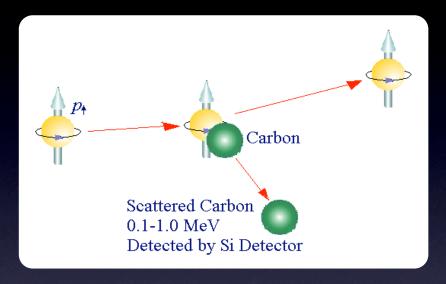
2005 π⁰ Cross Section

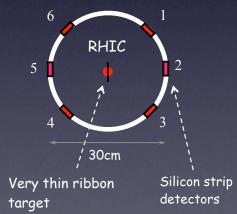
- L_{sampled}: 0.4 pb⁻¹ (HT triggers) 44mb⁻¹ (MB)
- $0.1 \le \eta \le 0.9; \ 0 \le \phi \le 2\pi$
- Systematics dominated by 5% uncertainty in BEMC energy scale
- Good agreement to NLO pQCD predictions.

Measuring A_{LL} at STAR

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_1 P_2} \times \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$

Three Measurements

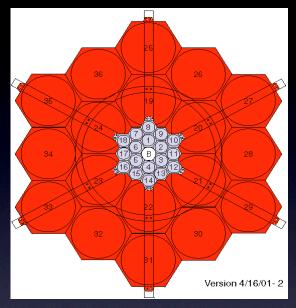

- Polarization
 - Coulomb-Nucleon Interference and H Polarimeters
 - ~55% avg. polarization
- Relative Luminosity
 - Beam-Beam Counters
- Spin Sorted Yields
 - Triggering on desired events
 - Final state reconstruction

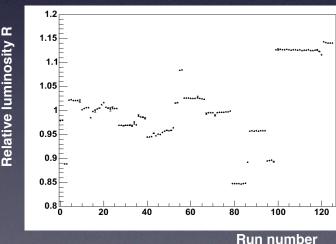

Measuring A_{LL} at STAR

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_1 P_2} \times \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$

Three Measurements

- Polarization
 - Coulomb-Nucleon Interference and H Polarimeters
 - **-** ∼55% avg. polarization
- Relative Luminosity
 - Beam-Beam Counters
- Spin Sorted Yields
 - Triggering on desired events
 - Final state reconstruction




Measuring A_{LL} at STAR

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_1 P_2} \times \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$

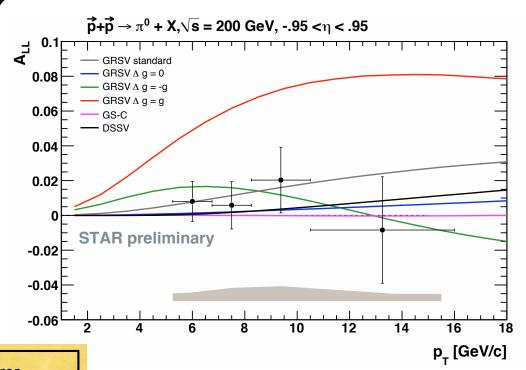
Three Measurements

- Polarization
 - Coulomb-Nucleon Interference and H Polarimeters
 - **-** ∼55% avg. polarization
- Relative Luminosity
 - Beam-Beam Counters
- Spin Sorted Yields
 - Triggering on desired events
 - Final state reconstruction

2006 Preliminary All

 χ^2 /ndf for NLO predictions:

0.3 GRSV Std:

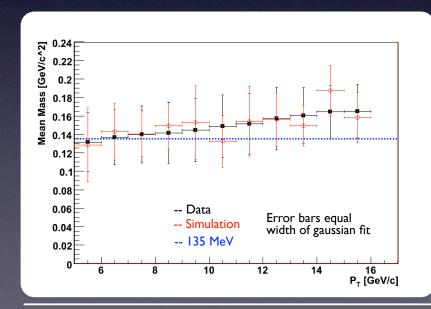

11.4 **GRSV Max:**

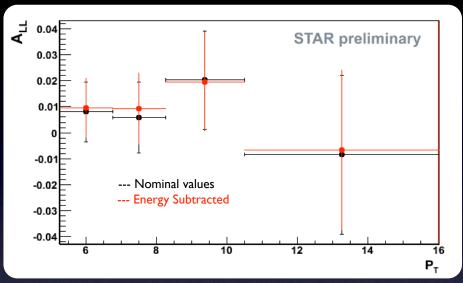
0.3 **GRSV Min:**

0.4 GRSV Zero:

0.5 GS-C:

DSSV: 0.4

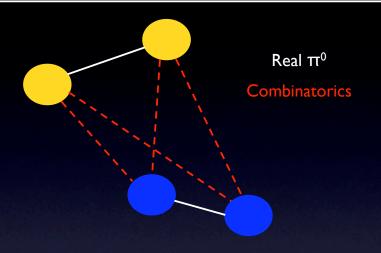


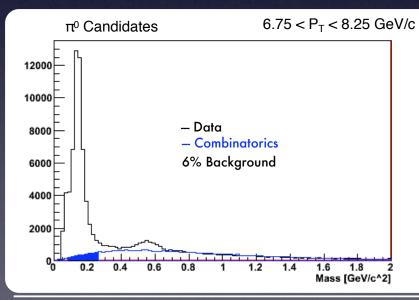

Pt Range [GeV/c]	A _{LL} ± Stat. Err. ± Sys. Error
5.2 - 6.75	0.0080 ± 0.0115 ± 0.002
6.75 - 8.25	0.0058 ± 0.0136 ± 0.004
8.25 - 10.5	0.0203 ± 0.0189 ± 0.004
10.5 - 16.0	-0.0084 ± 0.0306 ± 0.002

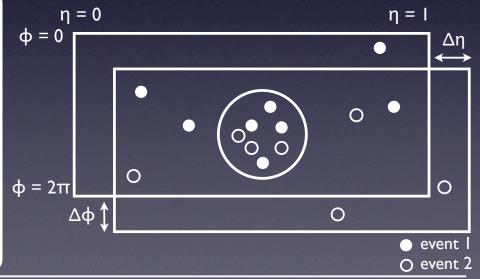
$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_1 P_2} \times \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$

Photon Energy Uncertainty

- Reconstructed pion mass is P_T-dependent.
- Numerous Effects
 - BEMC Resolution
 - π^0 Reconstruction Algorithm
 - Jet Background
- Recreated in Monte Carlo

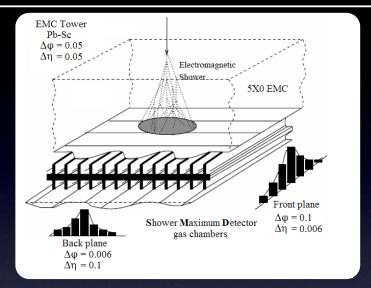


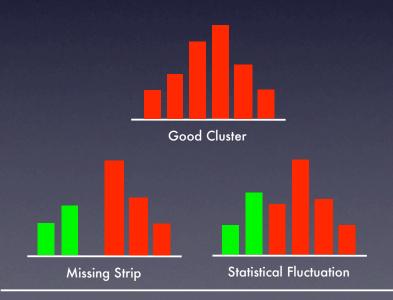

- Effect on A_{LL} consistent with statistical effect
- Uncertainty assigned (equal to observed shift) to be conservative

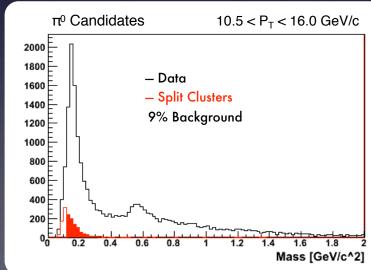

Pt Range [GeV/c]	Error x10 ⁻³
5.2 - 6.75	1.5
6.75 - 8.25	3.4
8.25 - 10.5	0.7
10.5 - 16.0	1.5

Combinatoric Background

- Modeled by mixing photons from different events (data)
- Careful about event topology
 - Rotating jets
 - Similar in jet η and z vertex
- Background shape fit to the data
- Uncertainty in A_{LL}: 0.5×10⁻³ 1.6×10⁻³ (P_T dependent)

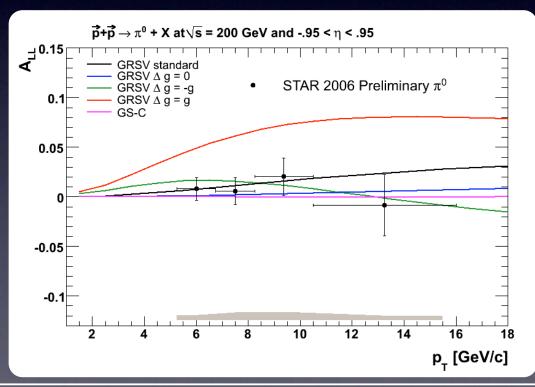


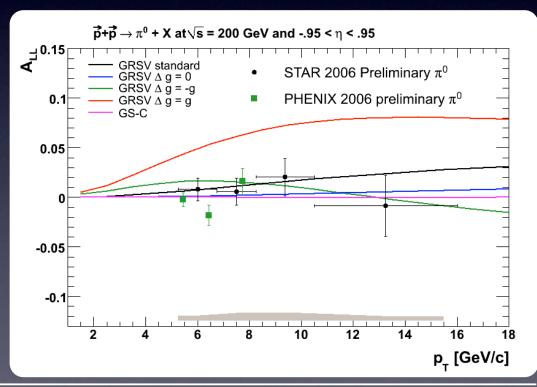




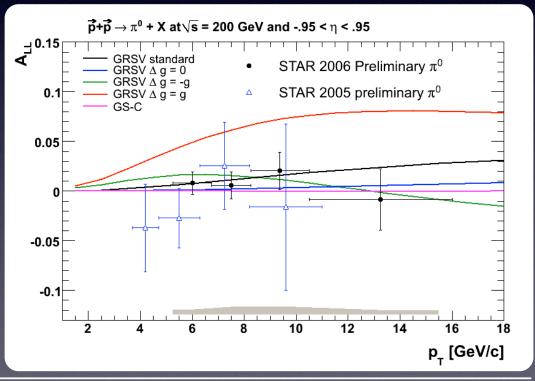
Split Clusters

- Above ~5 GeV/c in pion P_T , rely on SMD to separate and reconstruct decay photons.
- SMD hardware inefficiencies and energy fluctuations lead to 'split' photons.
- False positives at low M_{inv}
- Modeled with single particle MC
- Error: I.0x10⁻³ 3.8x10⁻³ (P_T dependent)




Summary

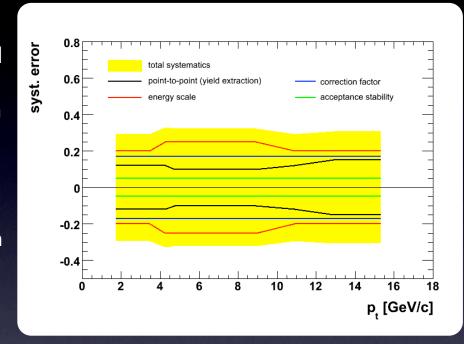
- Most recent measurement of A_{LL} and the cross section for inclusive π^0 production have been presented.
- Maximum polarization scenario is excluded, measurement cannot at this time distinguish between other scenarios.
- Results consistent with PHENIX 2006 preliminary
- The run 6 π⁰ result sees a significant increase in statistical precision as well as a greater reach in P_T compared to run 5.
- STAR is planning for a long pp run in Run 9. Expecting large increase in FOM with 60% polarization and 50 pb-1


Summary

- Most recent measurement of A_{LL} and the cross section for inclusive Π^0 production have been presented.
- Maximum polarization scenario is excluded, measurement cannot at this time distinguish between other scenarios.
- Results consistent with PHENIX 2006 preliminary
- The run 6 π^0 result sees a significant increase in statistical precision as well as a greater reach in P_T compared to run 5.
- STAR is planning for a long pp run in Run 9. Expecting large increase in FOM with 60% polarization and 50 pb-1

Summary

- Most recent measurement of A_{LL} and the cross section for inclusive π^0 production have been presented.
- Maximum polarization scenario is excluded, measurement cannot at this time distinguish between other scenarios.
- Results consistent with PHENIX 2006 preliminary
- The run 6 π^0 result sees a significant increase in statistical precision as well as a greater reach in P_T compared to run 5.
- STAR is planning for a long pp run in Run 9. Expecting large increase in FOM with 60% polarization and 50 pb-1


Backup

Systematics Summary

Run 5 Cross Section Measurement:

- Point-to-Point (yield extraction, background subtraction)
- Energy Scale (5% uncertainty on BSMD gain calibration)
- Correction Factor (variation of cuts, uncertainty in SMD gain (to a large extend built into MC, additional uncertainties included in systematics), statistical limitation of MC dataset)
- Acceptance Stability (changes in electronics status, modeling in MC)

Systematic Errors Assigned in Run 6 π^0 A_{LL} Analysis (all errors $\times 10^{-3}$)

- Non-Longitudinal Beam Components: 0.9
- Photon Energy Uncertainty: P_T Dependent from 0.7 to 3.4
- Backgrounds (from split clusters and combinatorics): P_T Dependent from 1.1 to 4.1