Transverse Spin Theory: 3-g Interaction and Transverse Spin Asymmetries

Jianwei Qiu Iowa State University

Based on work done with Kang, Sterman, Vogelsang, and Yuan

Pre-Spin2008 RHIC Spin Meeting

Charles B. Wang Center at Stony Brook University, October 3-4, 2008

October 3, 2008

Outline

- □ Why single transverse-spin asymmetry (SSA)?
- **SSA** in parton model
- \Box SSA in QCD k_T-factorization approach
- **SSA in QCD collinear factorization approach**
- □ Twist-3 trigluon correlation functions
- □ SSA of D-meson production in SIDIS
- □ SSA of D-meson production in hadronic collisions
- **Summary**

Single Transverse-Spin Asymmetry (SSA)

Definition:

$$A_{i} = \frac{\sigma(s) - \sigma(-s)}{\sigma(s) + \sigma(-s)} \qquad i = L, N$$

 \diamond Parity invariance: $A_L = 0$

 \diamond PT invariance: $A_N = 0$ for inclusive DIS, but

 $A_N \neq 0$ in collisions involving two or more hadrons

- $\diamond A_N$ vanishes in the parton model
- A_N is a direct consequence of parton's transverse motion

 TMD factorization (only Drell-Yan and SIDIS): Spin-dependent TMD distributions, or the Sivers functions
 Collinear factorization:

Twist-3 parton correlation functions, information beyond PDFs

SSA in Hadronic Collisions

If partons are collinear, $A_N \propto \alpha_s m_q$ to be very small

Single spin asymmetry corresponds to a T-odd triple product

- the phase "i" is required by time-reversal invariance
- covariant form: $A_N \propto i \epsilon^{\mu
 ulphaeta} \, p_\mu s_
 u \ell_lpha p_eta'$

Nonvanishing A_N requires a phase, a spin flip, and enough vectors to fix a scattering plan

Inclusive DIS does not have enough vectors

Note: q and p can only fix a line

 $A_N \propto i \, \vec{s}_p \cdot (\vec{p} imes \vec{\ell})$

SSA in the Parton Model

□ transverse spin information at leading twist – transversity:

$$\delta q(x) =$$
 = Chiral-odd helicity-flip density

□ the operator for δq has even γ 's \implies quark mass term □ the phase requires an imaginary part \implies loop diagram

SSA vanishes in the parton model connects to parton's transverse motion

TMD Factorization

Physical processes with two observed scales: Q and q

with the large Q to ensure a hard collision, while the $q \sim k_T$ probes a parton's transverse momentum

Semi-inclusive DIS:

Both p and p' are observed p'_{T} probes the parton's k_{T}

Effect of k_T is not suppressed by Q

 $\rightarrow \varphi(x) \Rightarrow \varphi(x, k_T^2) = TMD \text{ parton distributions}$

Direct information on parton's transverse momentum

TMD parton distributions

Transverse momentum dependent (TMD) parton distributions:
Belitsky, Ji, Yuan, 2003

$$\mathcal{M}_{a} = \int \frac{P^{+}d\xi^{-}}{\pi} \frac{d^{2}\xi_{\perp}}{(2\pi)^{2}} e^{-ix\xi^{-}P^{+}+i\xi_{\perp}\cdot k_{\perp}} \langle PS|\overline{\psi}_{a}(\xi)\mathcal{L}_{v}^{\dagger}(\infty;\xi)\mathcal{L}_{v}(\infty;0)\psi_{a}(0)|PS\rangle$$

$$= \frac{1}{2} \left[f_{a}^{\text{SIDIS}}(x,k_{\perp})\gamma_{\mu}P^{\mu} + \frac{1}{M_{P}} q_{Ta}^{\text{SIDIS}}(x,k_{\perp})\epsilon_{\mu\nu\alpha\beta}\gamma^{\mu}P^{\nu}k^{\alpha}S^{\beta} + \dots \right]$$
Spin-averaged
Spin-dependent
Sivers function

Connection to normal parton distributions

$$q_a(x) = \int d^2 k_T f_a^{\text{SIDIS}}(x, k_T) + \text{UVCT}$$

□ Spin-dependent TMD parton distributions

Sivers functions: quark or gluon

Measure TMD parton distributions

□ Need processes with two observed momentum scales:

 $Q_1 \gg Q_2 \begin{cases} Q_1 & \text{necessary for pQCD factorization to have a chance} \\ Q_2 & \text{sensitive to parton's transverse motion} \end{cases}$

□ Very limited processes with valid TMD factorization

- \diamond Drell-Yan transverse momentum distribution: Q, q_T
 - > quark Sivers function
 - ≻ low rate
- \diamond Semi-inclusive DIS for light hadrons: Q, p_T
 - mixture of quark Sivers and Collins function

Semi-inclusive DIS for heavy mesons (D's):

- > gluon Sivers function
- no Collins effect

SSA in collinear factorization

Efremov, Teryaev, 1982, Qiu, Sterman, 1991 \Box When all observed scales >> Λ_{QCD} , collinear factorization should work:

Leading spin dependent part of the cross section

Interference between amplitudes (a) and (b) or (c)

\Rightarrow The hadronic phase – the "*i*"

 \implies Re[(*a*)] interferes with Im[(*b*)] or Im[(*c*)]

* $\operatorname{Re}[(a)] \times \operatorname{Im}[(b)] \propto m_{\varrho} \, \delta q(s_{\perp})$

Twist-3 quark-gluon correlations

□ Factorization:

Qiu, Sterman, 1991, 1999

Twist-3 correlation functions:

• Only $T_F(x_1, x_2)$ contributes to SSA due to P and T invariance

Two gluonic twist-3 correlation functions:

 $T_G^{(f)}(x_1, x_2)$ and $T_G^{(d)}(x_1, x_2)$ due two independent color contractions

Asymmetries from the $T_F(x,x)$

Nonvanish twist-3 function **>** Nonvanish transverse motion

Collinear vs TMD factorization

Relation between TMD distributions and collinear factorized distributions

spin-averaged:

$$\int d^2 k_T f_a^{\text{SIDIS}}\left(x, k_T\right) + \text{UVCT}\left(\mu^2\right) = q_a\left(x, \mu^2\right)$$

Transverse-spin:

$$\frac{1}{M_P} \int d^2 \vec{k}_\perp \vec{k}_\perp^2 q_T(x, k_\perp) = T_F(x, x)$$

Relation between two factorization schemes

They are valid for different kinematical regions:

Collinear: $Q_1 \dots Q_n \gg \Lambda_{QCD}$ TMD: $Q_1 \gg Q_2 > \Lambda_{QCD}$

Common region:

 $Q_1 >> Q_2 >> \Lambda_{QCD}$ Ji, Qiu, Vogelsang, Yuan, 2005 where both schemes are expected to be valid

October 3, 2008

Twist-3 trigluon correlation functions

Ji, PLB289 (1992)

$$T_{G}(x,x) = \int \frac{dy_{1}^{-} dy_{2}^{-}}{2\pi} e^{ixP^{+}y_{1}^{-}} \times \frac{1}{xP^{+}} \langle P, s_{\perp} | F^{+}{}_{\alpha}(0) \left[\epsilon^{s_{\perp}\sigma n\bar{n}} F_{\sigma}^{+}(y_{2}^{-}) \right] F^{\alpha+}(y_{1}^{-}) | P, s_{\perp} \rangle$$

□ Two tri-gluon correlation functions – color contraction: $T_G^{(f)}(x,x) \propto i f^{ABC} F^A F^C F^B = F^A F^C (\mathcal{T}^C)^{AB} F^B$ $T_G^{(d)}(x,x) \propto d^{ABC} F^A F^C F^B = F^A F^C (\mathcal{D}^C)^{AB} F^B$ Fermionic correlation: $T_F(x,x) \propto \overline{\psi}_i F^C (T^C)_{ij} \psi_j$ □ D-meson production in SIDIS:

 \diamond Clean probe for gluonic twist-3 correlation functions \diamond $T_G^{(f)}(x,x)$ could be connected to the gluonic Sivers function

October 3, 2008

Phenomenology for SIDIS

□ **Production rate (spin averaged):**

Small φ dependence, reasonable production rate

Estimation of the SSA in SIDIS

 □ Dependence on tri-gluon correlation functions: D - meson ∝ T_G^(f) + T_G^(d) □ D - meson ∝ T_G^(f) - T_G^(d)

 Separate T_G^(f) and T_G^(d) by the difference between D and D

 □ Model for tri-gluon correlation functions: T_G^(f,d)(x, x) = λ_{f,d}G(x) λ_{f,d} = ±λ_F = ±0.07GeV

 □ Kinematic constraints:

$$x_{min} = \begin{cases} x_B \left[1 + \frac{P_{h\perp}^2 + m_c^2}{z_h (1 - z_h) Q^2} \right], & \text{if } z_h + \sqrt{z_h^2 + \frac{P_{h\perp}^2}{m_c^2}} \ge 1 \\ x_B \left[1 + \frac{2m_c^2}{Q^2} \left(1 + \sqrt{1 + \frac{P_{h\perp}^2}{z_h^2 m_c^2}} \right) \right], & \text{if } z_h + \sqrt{z_h^2 + \frac{P_{h\perp}^2}{m_c^2}} \le 1 \end{cases}$$

Note: The $z_h(1-z_h)$ has a maximum

SSA should have a minimum if the derivative term dominates

October 3, 2008

Minimum in the SSA of D-meson production

\Box SSA for D⁰ production (λ_f only):

 $\boldsymbol{\ast}$ Derivative term dominates, and small $\boldsymbol{\phi}$ dependence

- * Asymmetry is twice if $T_G^{(f)} = +T_G^{(d)}$, or zero if $T_G^{(f)} = -T_G^{(d)}$
- * Opposite for the \bar{D} meson
- * Asymmetry has a minimum ~ z_h ~ 0.5

Maximum in the SSA of D-meson production

\Box SSA for D⁰ production (λ_f only):

* The SSA is a twist-3 effect, it should fall off as $1/P_T$ when $P_T >> m_c$

* For the region, $\mathbf{P}_{\mathbf{T}} \sim \mathbf{m}_{\mathbf{c}}$, $A_N \propto \epsilon^{P_h s_\perp n \bar{n}} \frac{1}{\tilde{t}} = -\sin \phi_s \frac{P_{h\perp}}{\tilde{t}}$ $\tilde{t} = (p_c - q)^2 - m_c^2 = -\frac{1 - \hat{z}}{\hat{x}}Q^2$ $\hat{z} = z_h/z, \quad \hat{x} = x_B/x$

October 3, 2008

D-meson production in Hadronic Collisions

Two partonic subprocesses:

Kang, Qiu, Vogelsang, Yuan, 2008

Quark-antiquark annihilation:

Gluon-gluon fusion:

Factorized formula for D-meson production

□ Same factorized formula for both subprocesses:

$$\begin{split} E_{P_h} \frac{d\Delta\sigma}{d^3 P_h} \bigg|_{q\bar{q}\to c\bar{c}} &= \left. \frac{\alpha_s^2}{S} \sum_q \int \frac{dz}{z^2} D_{c\to h}(z) \int \frac{dx'}{x'} \phi_{\bar{q}/B}(x') \int \frac{dx}{x} \sqrt{4\pi\alpha_s} \left(\frac{\epsilon^{P_h s_T n\bar{n}}}{z\tilde{u}} \right) \delta\left(\tilde{s} + \tilde{t} + \tilde{u} \right) \\ &\times \left[\left[\left(T_{q,F}(x,x) - x \frac{d}{dx} T_{q,F}(x,x) \right) H_{q\bar{q}\to c}(\tilde{s},\tilde{t},\tilde{u}) + T_{q,F}(x,x) \mathcal{H}_{q\bar{q}\to c}(\tilde{s},\tilde{t},\tilde{u}) \right], \\ E_{P_h} \frac{d\Delta\sigma}{d^3 P_h} \bigg|_{gg\to c\bar{c}} &= \left. \frac{\alpha_s^2}{S} \sum_{i=f,d} \int \frac{dz}{z^2} D_{c\to h}(z) \int \frac{dx'}{x'} \phi_{g/B}(x') \int \frac{dx}{x} \sqrt{4\pi\alpha_s} \left(\frac{\epsilon^{P_h s_T n\bar{n}}}{z\tilde{u}} \right) \delta\left(\tilde{s} + \tilde{t} + \tilde{u} \right) \\ &\times \left[\left(T_G^{(i)}(x,x) - x \frac{d}{dx} T_G^{(i)}(x,x) \right) H_{gg\to c}^{(i)}(\tilde{s},\tilde{t},\tilde{u}) + T_G^{(i)}(x,x) \mathcal{H}_{gg\to c}^{(i)}(\tilde{s},\tilde{t},\tilde{u}) \right], \end{split}$$

□ Hard parts:

$$\begin{split} H_{q\bar{q}\rightarrow c} &= H_{q\bar{q}\rightarrow c}^{I} + H_{q\bar{q}\rightarrow c}^{F} \left(1 + \frac{\tilde{u}}{\tilde{t}}\right) \qquad H_{gg\rightarrow c}^{(i)} = H_{gg\rightarrow c}^{I(i)} + H_{gg\rightarrow c}^{F(i)} \left(1 + \frac{\tilde{u}}{\tilde{t}}\right) \\ & \text{All } \mathcal{H}_{q\bar{q}\rightarrow c} \text{ and } \mathcal{H}_{gg\rightarrow c}^{I(i)} \text{ and } \mathcal{H}_{gg\rightarrow c}^{F(i)} \text{ vanish as } m_{c}^{2} \rightarrow 0 \\ & \square \text{ Hard parts change sign for } T_{G}^{(d)}(x,x) \text{ when } c \longrightarrow \bar{c} \\ & H_{gg\rightarrow \bar{c}}^{(f)} = H_{gg\rightarrow c}^{(f)}, \qquad H_{gg\rightarrow \bar{c}}^{(d)} = -H_{gg\rightarrow c}^{(d)}, \\ & \mathcal{H}_{gg\rightarrow \bar{c}}^{(f)} = \mathcal{H}_{gg\rightarrow c}^{(f)}, \qquad \mathcal{H}_{gg\rightarrow \bar{c}}^{(d)} = -\mathcal{H}_{gg\rightarrow c}^{(d)}. \end{split}$$

October 3, 2008

Rapidity dependence of D-meson production

SSA at RHIC: $\sqrt{s} = 200 \text{ GeV}$ $\mu = \sqrt{m_c^2 + P_{h\perp}^2}$ $m_c = 1.3 \text{ GeV}$

October 3, 2008

P_{T} -dependence of D-meson production

SSA at RHIC: $\sqrt{s} = 200 \text{ GeV}$ $\mu = \sqrt{m_c^2 + P_{h\perp}^2}$ $m_c = 1.3 \text{ GeV}$

October 3, 2008

Summary

Single transverse-spin asymmetry is directly connected to the parton's transverse motion (P and T invariance)

- an excellent probe for the parton's transverse motion

Two complementary approaches:

TMD:direct k_T information- two-scale observablesCollinear:net spin-dependence of all k_T - single-scale observalbes

D-meson production in SIDIS, as well as in hadron-hadron collisions, is an excellent observable to measure the new tri-gluon correlation functions

 \rightarrow QCD global analysis of twist-3 distributions: $T_F, T_G^{(f)}, T_G^{(d)}$

Several existing and upcoming experiments will help!

Backup slides

What is the $T_F(x,x)$?

Twist-3 correlation $T_F(x,x)$:

$$\begin{split} T_F(x,x) &= \int \frac{dy_1^-}{4\pi} \mathrm{e}^{ixP^+y_1^-} \\ &\times \langle P, \vec{s}_T | \bar{\psi}_a(0) \gamma^+ \left[\int dy_2^- \epsilon^{s_T \sigma n \bar{n}} F_{\sigma}^+(y_2^-) \right] \psi_a(y_1^-) | P, \vec{s}_T \rangle \end{split}$$

Twist-2 quark distribution:

$$q(x) = \int \frac{dy_1^-}{4\pi} e^{ixP^+y_1^-} \langle P, \vec{s}_T | \bar{\psi}_a(0) \gamma^+ \psi_a(y_1^-) | P, \vec{s}_T \rangle$$

 $T_F(x,x)$ represents a net spin dependence of a quark's transverse motion via a gluon interaction inside a transversely polarized proton

What the $T_F(x,x)$ tries to tells us? rest frame of (p,s_T)

change of transverse momentum

$$\frac{d}{dt}p_2' = e(\vec{v}' \times \vec{B})_2 = -ev_3B_1 = ev_3F_{23}$$

in the c.m. frame

$$(m, \vec{0}) \to \bar{n} = (1, 0, 0_T), \quad (1, -\hat{z}) \to n = (0, 1, 0_T)$$

$$\implies \frac{d}{dt}p'_2 = e \,\epsilon^{s_T \sigma n\bar{n}} F_{\sigma}^{+}$$
- total change:
$$\Delta p'_2 = e \int dy^- \epsilon^{s_T \sigma n\bar{n}} F_{\sigma}^{+}(y^-)$$

October 3, 2008

Quark Sivers functions

