Measurements of the double spin asymmetry in inclusive jet production in polarized p+p collisions at sqrt(s)= 200 GeV

> Joanna Kiryluk (MIT) for the STAR Collaboration

APS/JPS DNP meeting 18 September 2005, Maui, Hawaii

Outline:

- 1. Motivation
- 2. STAR Detector at RHIC
- 3. Data Selection
- Today's 4. A_{II} - (first) Preliminary Results talk
- 5. Summary and Outlook

Motivation - determination of gluon polarization in the proton

'Spin crisis' (EMC,1989) -the quarks spins carry only a small (~10%) fraction of the proton spin

Confirmed by series of pol. Deep Inelastic Experiments (SMC, E143, Hermes ...) Gluons? Orbital momentum?

Gluon polarization - *poorly constrained* from the NLO QCD analysis of $g_1(x,Q^2)$ spin structure function in pol. DIS experiments (photons and gluons do not couple!)

Call for *alternative* methods to determine gluon polarization

Most promising: polarized proton-proton interactions

Inclusive jet production in pp interactions

- Convolutions "pdf × pdf × hard scattering" complicated and inversion $A_{LL} \rightarrow g(x)$ not straightforward
- At the moment emphasis is on NLO predictions of A_{LL} in terms of "model" Δg
- Future: CTEQ-style global analysis of variety of A_{LL} data (should include NLO)

STAR detector at RHIC

Solenoidal Magnet B = 0.5 T

Tracking Detectors

- Time Projection Chamber $|\eta| < 1.6$
- Forward TPC $2.5 < |\eta| < 4.0$
- Silicon Vertex Tracker $|\eta| < 1$

Trigger Detectors

- Beam-Beam Counters $3.4 < |\eta| < 5$
- Zero-Degree Calorimeter $|\eta| \sim 6$

+ E-M Calorimeters - installation in stages to be completed before 2006

- Barrel EMC $|\eta| < 1$
- Endcap EMC $1.0 < \eta < 2.0$
- Forward Pion Detector $3.3 < |\eta| < 4.1$
- STAR unique capability at RHIC for jet reconstruction (TPC+EMC)
- BBC + scaler board system for (relative) luminosity and polarization monitoring cf. talk by B. Christie, BNL (Session ED on Wednesday)

Jet reconstruction at STAR

Jet reconstruction at STAR - via TPC $p_{\rm T}$ for charged hadrons and EMC $E_{\rm T}$ for electro-magnetic showers

1) Jets reconstruction - midpoint cone algorithm seed energy = 0.5 GeV, cone angle R = 0.4 in η - ϕ splitting/merging fraction f=0.5

2) Trigger used in this analysis - High Tower: $E_T > 2.4$ GeV deposited in one tower ($\Delta \eta \ge \Delta \phi$) = (0.05 ≥ 0.05) + additional requirement of BBC coincidence.

3) Data set: ~0.3 pb⁻¹ (2003 and 2004) recorded luminosity $<P_b>=0.3$ (2003) and $<P_b>=0.4$ (2004)

4) Cuts on:

- |z-vertex| < 75cm (2003) and < 60cm (2004)
- charged tracks $|\eta \ | < 1.6$ and $p_T \ {>} 0.1 \ GeV/c$
- jets: p_T jet > 5 GeV/c , 0.2< jet η (det) <0.8
- background: $E_{EMC}/E_{tot} < 0.9$ (2004) and < 0.8 (2003)

5) Final statistics (after cuts) for $5 < \text{jet } p_T < 17 \text{ GeV/c:}$ 125k (2003) and 162k (2004) jets

•	Time Projection Chamber	η <1.6
•	Barrel EMC	0< η <1

• Beam Beam Counters $3.4 < |\eta| < 5$

Inclusive jet cross section measurement cf. talk by M.Miller, MIT (this session)

Effect of cuts on jet statistics (e.g. 2004)

Initial sample = 1.4 M HighTower trigger events (0.4 M jets reconstructed)

Double Longitudinal Spin Asymmetry Measurements

$$A_{LL} = \frac{\sum_{i} A_{LL}^{i} w_{i}}{\sum_{i} w_{i}} \text{ where } w_{i} = \left(\frac{1}{\delta A_{LL}^{i}}\right)^{2}$$
$$\delta A_{LL} = \frac{1}{\sqrt{\sum_{i} w_{i}}}$$

$$A_{LL}(p_{t}) = \frac{\sum_{i} P_{Y}^{i} P_{B}^{i} \left(N_{\uparrow\uparrow}^{i} - R_{i} N_{\uparrow\downarrow}^{i}\right)}{\sum_{i} \left(P_{Y}^{i} P_{B}^{i}\right)^{2} \left(N_{\uparrow\uparrow}^{i} + R_{i} N_{\uparrow\downarrow}^{i}\right)}$$
$$\delta A_{LL}(p_{t}) \approx \frac{1}{\sqrt{\sum_{i} \left(P_{Y}^{i} P_{B}^{i}\right)^{2} \left(N_{\uparrow\uparrow}^{i} + R_{i} N_{\uparrow\downarrow}^{i}\right)}}$$

Index i - STAR run number

Require concurrent measurements:

- magnitude of beam polarization, $P_{1(2)}$
- direction of polarization vector at interaction point
- relative luminosity of bunch crossings with different spin directions: $R = \frac{L_{++}}{L_{--}}$
- spin dependent yields of process of interest: $N_{i}\,and\,N_{ij}$ $_{-}$

RHIC polarimeter(s)

STAR

Double spin asymmetry A_{LL} (preliminary) results in inclusive jet production in p+p collisions at sqrt(s)=200GeV

- Consistent results from 2003 and 2004 analyses
- Results limited by statistical precision
- Total systematic uncertainty ~0.01 (STAR) + beam polarization (RHIC)

Sources of systematic uncertainties: background contribution, trigger bias, relative luminosity, residual (non-longitudinal) asymmetries, bunch to bunch systematic variations (random pattern analysis) + beam polarization

Double spin asymmetry A_{LL} (preliminary) results in inclusive jet production in p+p collisions at sqrt(s)=200GeV

Results limited by statistical precision Total systematic uncertainty ~0.01 (STAR) + beam pol. (RHIC)

A₁₁ systematics - a closer look

We estimated (i) the background spectrum and background fraction f_{bq} in the final (after all cuts, including Jet $E_{EMC}/E_{tot} < 0.9 \text{ cut}$) jet sample and (ii) extracted background asymmetry A^{bg}_{LL}

A₁₁ systematics - a closer look

Trigger bias

High Tower trigger ($E_T > 2.4$ GeV deposited in one tower) selects on e-m energy deposits and may thus distort the partonic subprocess contributions in inclusive jet production.

Possible size of this effect was estimated from MonteCarlo (Pythia+GEANT) simulations of the trigger response, and from various polarized parton distribution functions such as GRSV-std and -max.

Massachusetts Institute of Technology

Systematic Study for A_{LL} - Random Fill Pattern Analysis

The RMS is consistent with A_{LL} statistical uncertainties indicating that bunch to bunch and fill to fill systematic uncertainties are negligible

Cross checks - e.g. (2004) parity violating asymmetries

Joanna Kiryluk

13

TAR spin

Summary and Outlook

- We presented the first (preliminary) results for the measurement of double spin asymmetry A_{LL} in inclusive jet production in polarized proton-proton collisions at sqrt(s)= 200 GeV over the measured jet p_T range 5-17 GeV.
- The data was collected during 2 weeks in 2003 (first physics pp run at RHIC with longitudinally polarized beams) and 2 weeks in 2004 (commissioning run) with average beam polarizations of about 30% in 2003 and 40% in 2004.
- The asymmetry A_{LL} is consistent with evaluations based on DIS over the measured kinematic range of jet 5 < p_T < 17 GeV/c.
- The results for A_{LL} are limited by statistical uncertainties of about 0.015 and currently do not distinguish between the different scenarios for gluon polarization in the proton allowed by polarized DIS data.

Prospects for Run5

- STAR collected ~10 times more statistics (the first long pp run) with higher beam polarization (better source) than in 2003 and 2004.
- STAR will be able to distinguish between the most extreme scenarios for gluon polarization in the proton.

