Lepton and Photon Measurements at RHIC/PHENIX

大阪大学核物理研究センター研究会 「高エネルギー重イオン実験の現象論的解析」

2003年10月27-28日 大阪大学核物理研究センター

志垣 賢太 広島大学 / PHENIX Collaboration

- Presentation Outline -

- physics via lepton/photon channels at RHIC
 - physics goals of relativistic heavy ion programs
 - lessons from SPS programs
- physics via lepton/photon channels at PHENIX
 - physics strategies and detectors
 - Au+Au/d+Au/p+p results from Runs 1-3
 - plans and expectations for Run 4 and beyond
 - heavy quark states for deconfinement
 - open heavy flavors for QCD dynamics
 - light vector mesons for chiral symmetry restoration
 - thermal dileptons for equation of state
 - direct photons for equation of state
- summary and concluding remarks

- Physics Goals of RHI Programs -

QCD in extreme conditions and scales

- high energy and/or nuclear density frontier
 - search for and characterize deconfined partonic phase
- Bevalac/SIS/AGS/SPS to RHIC/LHC
 - high density regime to high energy density regime
 - reproduction of universe a few μsec after big bang

- Lessons from SPS Heavy Ion Programs -

- claim of QGP discovery by 7 experiments in 2000
- combination of signatures essential
 - hadrons to probe boundary conditions of dynamics
 - photons to trace evolution of system
 - leptons to probe early hot stage of interaction
- particular importance to probe early stages
 - J/ Ψ "anomalous" suppression
 - NA50; Pb+Pb; color Debye screening ?
 - intermediate-mass dimuon enhancement
 - NA50; S+U, Pb+Pb; charm enhancement?
 - low-mass dielectron enhancement
 - NA45 (CERES); S+Au, Pb+Au; ρ enhancement/melting ?

- Pioneering High Energy Nucl. Interaction Exp. -

- maximal set of probes and physics channels
 - photons/electrons/muons/hadrons
- high quality measurement
 - good particle identification
 - high resolution
 - wide kinematical coverage
- access to rare processes
 - high rate capability
 - selective multi-level triggering

- PHENIX Physics Strategies -

- various signatures; essentially all time scales
 - initial hard process
 - jets, high *p*_t hadrons/photons
 - deconfinement
 - heavy quark states
 - chiral symmetry restoration
 - light vector mesons, isospin fluctuations
 - thermalization
 - thermal photons/dileptons, open heavy flavors
 - hadronization
 - hadron spectra, strangeness, HBT interferometry
 - hydro-dynamics
 - transverse energy, dN/dy

- PHENIX Outstanding Features -

- unique emphasis on penetrating probes
 - the lepton/photon experiment at RHIC
 - used to be... PHoton Electron Nuclear Interaction eXp.
 - then... Photon Hadron Electron Nuclear Interaction eXp.
 - then maybe... Photon Hadron Electron muoN Integrated eXp.
 - and now... Pioneering High Energy Nuclear Interaction eXp.
 - the rare-process experiment at RHIC
- access to most promising physics probes
 - probes of early stages (deconfinement/chirality/EoS)
 - heavy quark states (J/ Ψ , Ψ ', Υ)
 - open heavy flavors (charm, beauty)
 - light vector mesons (φ, ω, ρ)
 - thermal dileptons (e⁺e⁻, μ⁺μ⁻)
 - direct photons (γ)

- PHENIX Detector Configuration -

- central photon/electron/hadron arms
 - tracking chambers + EMCal/RICH/ToF
- forward muon arms
 - tracking chambers + muon identifiers
- global event characterization detectors
 - beam-beam counters, zero-degree calorimeters, ...

- PHENIX Lepton/Photon Triggers -

real-time electron trigger with RICH and EMCal
 real-time muon trigger with µID
 real-time photon trigger with EMCal

concepts of PHENIX electron/muon triggers

- PHENIX Publication Status -

published/accepted(/submitted) papers so far

- Au+Au at $\sqrt{s_{NN}} = 130 \text{ GeV}$
 - global: E_{t} multiplicity, p_t and E_t fluctuations, charge fluctuation
 - hadrons: identified charged, quenching, Λ , flow, HBT
 - leptons: single electron
- Au+Au at $\sqrt{s_{NN}}$ = 200 GeV
 - global: (*p*_t fluctuation)
 - hadrons: neutral pion, identified charged, proton scaling, elliptic flow, (quenching)
 - leptons: J/Ψ
- p+p at \sqrt{s} = 200 GeV
 - hadrons: neutral pion
 - leptons: J/Ψ
- d+Au at $\sqrt{s_{NN}}$ = 200 GeV
 - hadrons: no quenching

- PHENIX Lepton/Photon Physics Status -

- PHENIX publications mostly on hadrons so far
- lepton/photon measurement baseline established; analyses in progress on many topics
 - a few first publications
 - preliminary presentations at, *e.g.*, JPS/APS meetings
 - new results coming soon at, e.g., QM'04
- high-luminosity high-statistics run approaching
 - run 4 (2003-2004) to be long full-energy Au+Au run
 - accelerator commissioning from Nov.24, 2003; first collision expected on Dec.12, 2003; physics run planned from Jan.5, 2004
 - 300 μb^{-1} integrated luminosity anticipated to be delivered
 - PHENIX DAQ upgraded for higher data rate

- Heavy Quark States at RHIC/PHENIX -

- anticipated probes of deconfined partonic phase
- systematic studies to overcome uncertainties
 - baseline p+p/p(d)+A measurements
 - $\sqrt{s_{NN}}$, rapidity, p_t dependences
 - PHENIX central and forward arms
 - regions with different energy densities
 - J/ Ψ and Υ families
 - J/Ψ, Ψ', Υ(1S), Υ(2S+3S)
 - reference channels
 - continuum dileptons (charm, Drell Yan), single leptons (charm), single photons
 - high-statistics analyses
 - detailed centrality dependence
 - feed down effect, *e.g.* $p+p \rightarrow \chi_c \rightarrow J/\Psi + \gamma$

- Heavy Quark States at $\sqrt{s_{NN}} = 17.3 \text{ GeV}$ -

SPS NA50, Pb+Pb

- strong suppression of Ψ'
- two-step J/ Ψ behavior due to χ_c and J/ Ψ dissolution ?

- J/ Ψ Baseline: p+p -

p+p→J/Ψ+X at $\sqrt{s_{NN}}$ = 200 GeV nucl-ex/0307019; submitted to PRL

\blacklozenge clear J/ Ψ signals in both central and forward arms

- expected mass resolutions
- mean transverse momentum: 1.80 ± 0.23 (stat.) ± 0.16 (sys.) GeV/c
- integrated cross section: 3.99 ± 0.61 (stat.) ± 0.58 (sys.) ± 0.40 (abs.) μb

- Comparison with Models and Previous Data -

and care and ant with

good agreement with

- lower \sqrt{s} data and phenomenological extrapolation
- color evaporation model

October 27, 2003

- More J/ Ψ Baseline: d+Au -

opposite-sign pairs same-sign pair background

~ $211 \text{ J/}\Psi$'s mass: $3.11 \pm 0.02 \text{ GeV}$ width: $143 \pm 14 \text{ MeV}$

d+Au \rightarrow J/ $\Psi \rightarrow \mu^+ \mu^-$ at $\sqrt{s_{NN}}$ = 200 GeV

analysis in progress only ~ 1/3 of d+Au data shown here

- J/ Ψ : Run 2 Au+Au -

not much statistics, but

- binary scaling disfavored
- inconsistent with enhancement scenarios
 - e.g. coalescence model, cf. PRC 63, 054905 (2001)

October 27, 2003

- Open Heavy Flavors at RHIC/PHENIX -

- valuable probes of QCD dynamics in early stages
 - thermal charm production
 - quark energy loss
 - reference of heavy quark states and continuum dileptons
- observables include:
 - high *p_t* leptons
 - high-mass dileptons
 - $e \mu$ coincidence

- Open Heavy Flavors via Single Electrons -

- inclusive electrons dominated by photon conversions and hadron Dalitz decays
- excess from cocktail attributed to charm

Au+Au \rightarrow e[±]+X at $\sqrt{s_{NN}}$ = 130 GeV *cf.* PHENIX PRL88, 192303 (2002)

- Non-Photonic (Heavy Flavor) Electrons -

agreement with PYTHIA with binary scaling

- both in minimum-bias and central Au+Au
 - no high *p_t* suppression observed (!)

- Comparison with Models and Previous Data -

consistent with √s systematics and binary scaling
 within large systematic uncertainties

- Converter Analysis of Open Heavy Flavors -

photonic component subtracted from inclusive
 real photon spectrum measured with photon converter
 virtual-photon sources are also real-photon sources

consistent with PYTHIA with binary scaling

October 27, 2003

- No Suppression Observed for Open Charms -

consistent with PYTHIA in all centralities (!)

- More Lepton Channels at RHIC/PHENIX -

- light vector mesons (ϕ , ω , ρ)
 - probes of chiral symmetry restoration
 - changes in masses, widths, branching ratios
 - experimentally challenging due to limited S/B ratios
 - analyses in progress on Au+Au/d+Au/p+p data
 - material in central arm aperture reduced in Run 4
 - prime goal of PHENIX future upgrade
- thermal dileptons
 - possible mass window at 1-2 GeV/c²
 - cf. direct photons
 - S/B ratio critical as with light vector mesons

- Direct Photons at RHIC/PHENIX -

- photons sensitive to
 - initial parton distribution
 - initial k_t ()
 - k_t broadening ()
 - shadowing ()
 - saturation ()
 - final state parton/hadron rescattering
 - thermal radiation ()
 - jet/parton radiation ()
- experimental virtues
 - particle identification to very high transverse momentum
 - photons and neutral mesons measured in same detector
 - neutral mesons additionally sensitive to final state effects
 - useful to distinguish initial/final state effects

- Direct Photon Observation at $\sqrt{s_{NN}} = 17.3 \text{ GeV}$ -

Pb+Pb $\rightarrow \gamma$ +X at $\sqrt{s_{NN}}$ = 17.3 GeV WA98 PRL 85, 3595 (2000) SPS WA98, central Pb+Pb
compared to p+A data

√s and binary scaling

similar spectral shape
p-induced reproduced by NLO pQCD + intrinsic K_t
factor 2-3 enhancement in central Pb+Pb

- pQCD Direct Photon Predictions for RHIC -

large direct photon signal expected

- (photons observed) / (photons from hadron decays)
- except if photons also suppressed (initial state effect)

- Direct Photon Baseline -

October 27, 2003

- Inclusive Photons: Peripheral Au+Au -

Boxes: 1o systematic error

- two independent detectors consistent
 consistent with no photon excess
 - based on measured neutral pion spectrum

- Inclusive Photons: Central Au+Au -

no direct photon excess seen within errors
systematic errors to be reduced in further analysis

- Summary as of October, 2003, and Outlook -

- hadrons (jets) exciting enough at RHIC
 - cf. precedent presentation by T.Chujo
 - "it's a quark-gluon plasma. period." (M.Gyulassy)
- further insights arriving via lepton/photon channels
 - penetrating probes of early stages
 - J/ Ψ , Ψ ', Υ , charm, beauty, ϕ , ω , ρ , thermal e⁺e⁻, $\mu^+\mu^-$, direct γ
 - baseline established; already interesting clues
- coming high-statistics run(s) essential and exciting
 - run 4 (2003-2004) to be the rare-process run
 - stay tuned; more results appearing really soon
- ... plus upgrade plans and beyond

- Physics Programs with PHENIX Upgrades -

- high p_t identified hadrons
 - aerogel + ToF
- open charm and beauty
 - silicon vertex tracker
- Iow-mass dielectrons
 - hadron blind detector + TPC
- high p_t hadrons and jets
 - TPC + silicon vertex tracker
- high p_t muons (Υ , W)
 - enhanced muon trigger

- Open Charm and Beauty with SVT -

clean identification by decay vertex detection

- beauty and low p_t charm via displaced e^{\pm} and/or μ^{\pm}
- high p_t charm via $D \rightarrow \pi K$
- beauty via displaced J/Ψ

- Low-Mass Dielectrons with HBD/TPC -

- charm S/B ratio to improve by > 20
 - by rejecting photon conversions and Dalitz decays
 - small opening-angle and/or mass dielectrons to be rejected

- Fine-Granularity EM Calorimeter Option -

- *e.g.* ALICE photon spectrometer modules
 - high granularity and resolution with PbWO₄ crystals
 - must be powerful also at RHIC
 - direct photons
 - diphotons

• *n.b.* not presently in PHENIX future plan

possible PbWO ₄ photon spectrometer at RHIC	
coverage:	1 m × 1 m
crystal size:	20 x 20 x 200 mm ³
array size:	50 × 50
distance from IP:	3 m
η coverage:	± 0.17

- (Real) Summary and Concluding Remarks -
- RHIC presenting rich harvest of physics
 - study of QCD in extreme conditions and scales
 - especially high energy density frontier
 - medium with strong final state effects formed in Au+Au
 - observed via hadron jet quenching and its absence in d+Au

deeper insights coming via lepton/photon channels

- most promising and unique to PHENIX
 - heavy quark states (J/ Ψ , Ψ ', Υ) for deconfinement
 - open heavy flavors (charm, beauty) for QCD dynamics
 - light vector mesons (ϕ , ω , ρ) for chiral symmetry restoration
 - thermal dileptons (e⁺e⁻, $\mu^+\mu^-$) for equation of state
 - direct photons (γ) for equation of state

stay tuned; more results in near- and further-future

detector upgrades also under R&D/construction