

High p_t Charged Pion Production at RHIC / PHENIX

Kenta Shigaki (KEK)

for the

PHENIX Collaboration

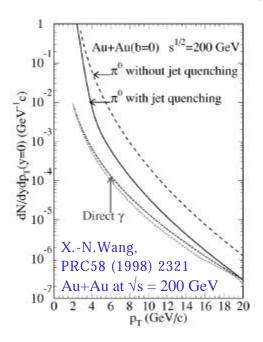
at

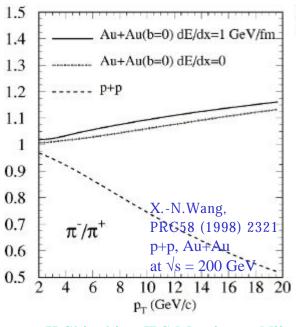
JPS Meeting at Niigata University

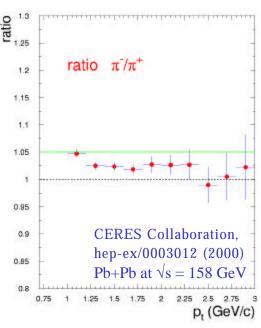
on

September 23, 2000

Presentation Outline


- Physics Goals and Approaches
- Run 2000 of PHENIX at RHIC
- PHENIX for Identified High p, Charged Hadrons
 - Statistics in Run 2000
 - Momentum Resolution of PHENIX
 - Particle Identification Capability of PHENIX
- Ring Imaging Cherenkov Counter
 - Performance in Run 2000
- Summary and Conclusions




Physics Goals and Approaches

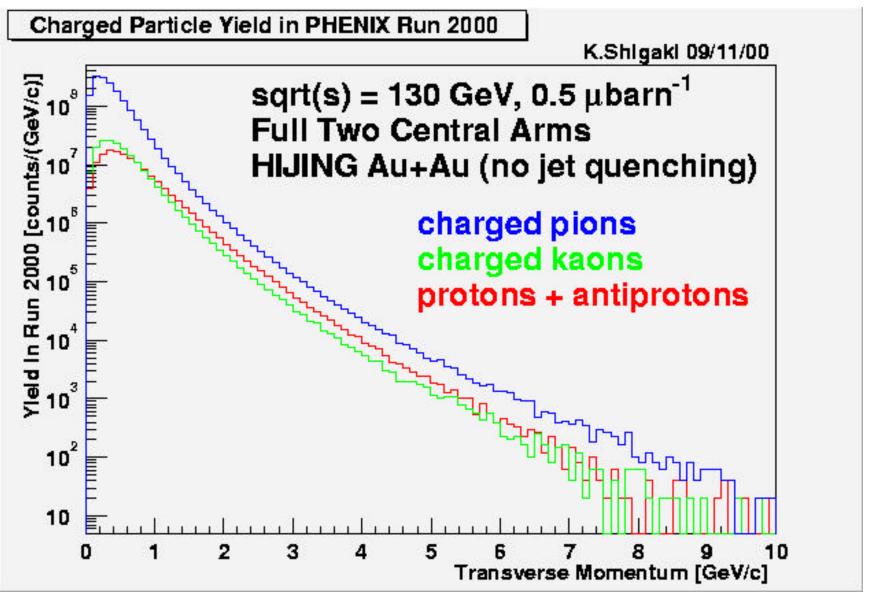
- quark energy loss (jet quenching)
 - high p_t tail of identified π^+ and π^-
- tracking + RICH
- quark fragmentation dominance
 - π^+/π^- ratio at high p_t
 - K/π ratio at high p_t

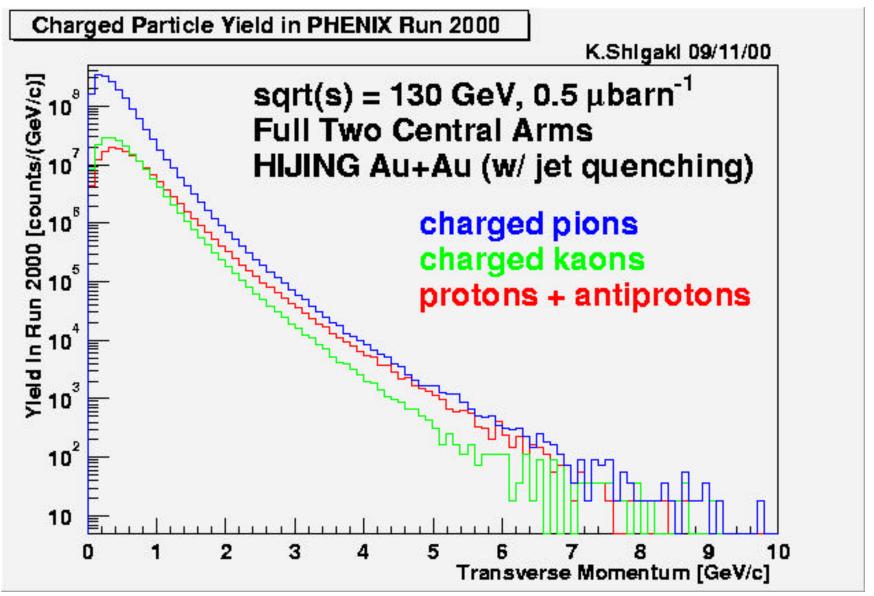
- tracking + RICH
- tracking + RICH + TOF

September 23, 2000

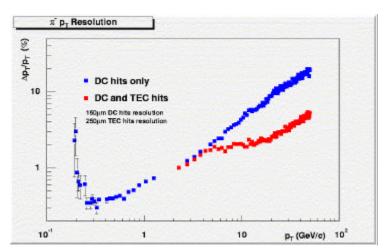
K.Shigaki at JPS Meeting at Niigata University

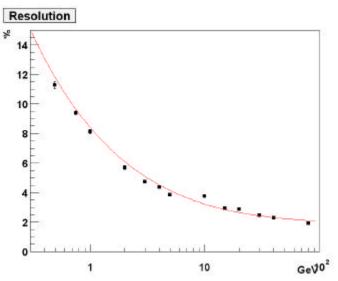
Run 2000 of PHENIX at RHIC


- first collision at PHENIX observed on June 15, 2000
- physics data taken in July through early-September, 2000
- run conditions
 - Au+Au at $\sqrt{s} = 56$ GeV and 130 GeV
 - recorded integrated luminosity ~ 0.5 μbarn⁻¹
 - DC/PC1/RICH covering full 2 central arms
 - more detectors (TEC/PC3/TOF/EMCal) with limited coverage
- detector calibration / geometry alignment in progress
- tracking performance under study
- first round of mass DST production starting soon


Statistics in Run 2000

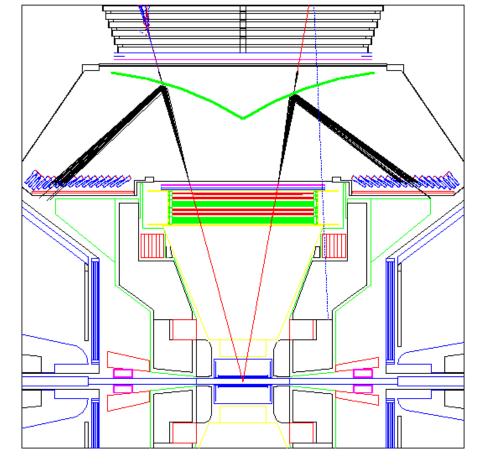
- HIJING generator employed here
 - statistical limit $\sim 7.5 \text{ GeV/}c$
 - ~ 10^2 counts per GeV/c per charge state at p_t ~ 7.5 GeV/c without jet quenching
 - factor ~ 4 suppression in the p_t region with jet quenching
 - jet quenching should be clearly observable





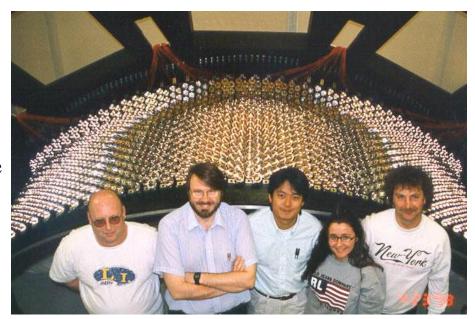
Momentum Resolution of PHENIX

- track momentum resolution
 - simulation study with DC only by J.Lajoie
 - 2 % at $p_t = 5 \text{ GeV/}c$
 - 4.5 % at 10 GeV/c
- *cf.* EMCal resolution for π^0
 - beam test analysis byA.Bazilevsky and H.Torii
 - 1.9 % \oplus 8.2 % / \sqrt{E}
 - 4 % for π^0 at 5 GeV
 - 3 % at 10 GeV
 - real data analysis in progress
 - cf. talks by H.Torii and K.Oyama


PID Capability of PHENIX

- RICH with CO₂ in runs 2000 and 2001
 - $-\gamma_{th}=33$
 - π threshold = 4.7 GeV/c
 - effective πID above ~ 5.5 GeV/c
 - π ID requirements much less stringent compared to eID
- time-of-flight wall
 - design time resolution ~ 80 psec
 - cf. talk by A.Kiyomichi
 - p/K track-by-track (4 σ) separation up to 4.0 GeV/c
 - p/K separation of 2σ at 6.0 GeV/c; yields accessible via multiparameter fitting
 - p_t window for $p/K/\pi$ yields

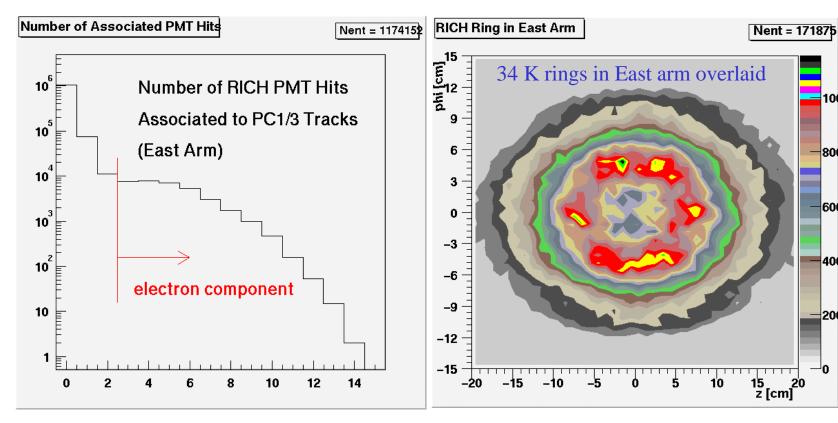
Ring Imaging Cherenkov Counter


- primary electron identification device of PHENIX
 - gaseous radiator
 - PMT array readout
 - hadron rejection at 10^4 level up to π threshold

Ring Imaging Cherenkov Counter

- RICH physicists and graduate students (as of run 2000)
 - CNS, U.Tokyo
 H.Hamagaki, T.Matsumoto,
 K.Oyama, T.Sakaguchi
 - Florida State U.A.D.Frawley
 - KEKY.Akiba, S.Sawada, K.Shigaki
 - Nagasaki Inst. of Appl. Science
 M.Fukutomi, Y.Nagasaka,
 Y.Tanaka, T.Ushiroda
 - State U. of NY at Stony Brook
 T.K.Hemmick
 - Waseda U.S.Kametani, J.Kikuchi, M.Tamai

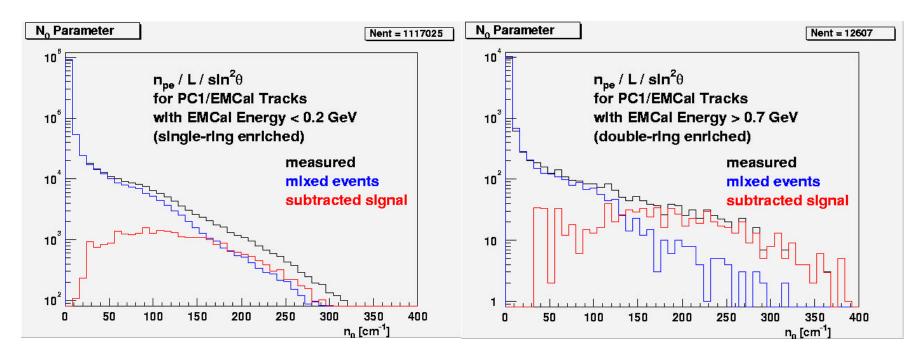
100


800

600

200

RICH Performance in Run 2000


- electron and hadron components separated
- clear Cherenkov rings associated to charged particle tracks

RICH Performance in Run 2000

- n_0 parameter $(n_{pe} = n_0 L \sin^2 \theta) \sim \text{design value}$
 - $n_0 \sim 100 \text{ cm}^{-1}$ in beam test of prototype
 - evaluated using zero field data
 - single- and double-ring enriched samples by energy in EMCal

Summary and Conclusions

- PHENIX successfully completed first physics run
- physics via high p_t charged pions to be extracted
 - tracking (DC/PC1) and RICH cover full 2 central arms
 - p_t range from ~ 5.5 GeV/c to ~ 7.5 GeV/c in run 2000
 - jet quenching should be clearly observable
- $p/K/\pi$ ratio can be measured in a small p_t window
 - tracking + RICH + TOF
 - p_t range from ~ 5.5 GeV/c to ~ 6.0 GeV/c
- detector calibration and physics analysis in progress
 - tracking performance under study
 - RICH performing well
 - electron and hadron components separated
 - clear Cherenkov rings associated to charged particle tracks
 - n_0 parameter probably ~ 100 cm⁻¹
 - high statistics analysis starting soon