# Physics via Lepton Channels at RHIC / PHENIX

### Kenta Shigaki

(KEK, PHENIX Collaboration)

at

Conference on the Intersections of Particle and Nuclear Physics

in

Quebec City, Quebec, Canada

on

May 24, 2000

## **Presentation Outline**

- Physics via Lepton Channels at RHIC
  - Physics Goals of RHIC
  - Relativistic Heavy Ion Physics at SPS and RHIC
- RHIC Accelerator and Experiments
- Physics via Lepton Channels in PHENIX Experiment
  - Physics Strategies and Detector System
  - Lepton Measurement Capabilities
  - Upcoming Physics
    - Systematic Studies of Quarkonium
    - Open Heavy Flavor
    - Light Vector Meson and Thermal Di-Lepton
- Summary and Conclusions

# Physics Goals of RHIC

- QCD in extreme conditions and scales
  - high energy density frontier (relativistic heavy ion physics)
    - search for and characterize deconfined quark-gluon plasma phase
  - high  $Q^2$  frontier with spin degree of freedom (high energy spin physics)
    - elucidate spin structure of nucleon
- from Bevalac/SIS/AGS/SPS to RHIC
  - from high density regime to high energy density (*"temperature"*) regime
  - reproduction of conditions of universe a few µsec after big bang



# **RHI** Physics at SPS and RHIC

- new state of matter claimed at CERN in February, 2000
  - SPS at 158 A GeV, *i.e.*  $\sqrt{s} = 17$  A GeV
  - quark-gluon plasma factory at RHIC with  $\sqrt{s} = 200 \text{ A GeV}$ ?
- combination of signatures to understand whole picture
  - hadrons to probe boundary conditions of collision dynamics
  - photons to trace evolution of system
  - leptons to probe early hot stage of collision
- CERN announcement based on 7 independent experiments
  - endorsed particular importance of lepton channels
  - RHIC experiments have comprehensive (and complementary) programs
  - especially PHENIX covers most of proposed physics probes

# Recent Lepton Channel Topics from SPS

- J/Ψ "anomalous" suppression
  - NA50; Pb+Pb
  - predicted by T.Matsui and H.Satz in 1986
  - color Debye screening ?
- intermediate-mass dimuon enhancement
  - NA50; S+U, Pb+Pb
  - charm enhancement ?
- low-mass dielectron enhancement
  - NA45 (CERES); S+Au, Pb+Au
  - $\rho$  enhancement/melting ?



# Relativistic Heavy Ion Collider

- ultimate tool with:
  - 2 superconducting rings
  - 3.8 km circumference
  - 6 intersecting locations
  - AGS complex as injector
- versatile heavy ion collider
  - up to Au+Au at  $\sqrt{s} = 200 \text{ GeV}$  per nucleon
  - capable of p+p, p+A, A+B
- polarized proton collider
  - up to  $\sqrt{s} = 500 \text{ GeV}$
- construction phase finished; physics run starting in weeks
- complimentary set of experiments



# Pioneering High Energy Nucl. Ion Exp.

- > 400 collaborators, 45 institutions, 13 countries
  - wide collaboration for wide physics



## Physics Strategies of PHENIX

- wide variety of probes with single detector and trigger
  - sensitivity to many signatures and essentially all time scales
    - strangeness and heavy flavor (charm, bottom) production
    - jet quenching
    - color Debye screening
    - chiral symmetry restoration
      - vector meson properties
      - disoriented chiral condensation
    - thermal radiation of hot gas
- emphasis on penetrating probes  $(\gamma, \gamma^*, l, l^+l^-)$ 
  - good PID capability, high resolution, wide kinematical coverage
  - high rate capability, selective multi-level triggering

![](_page_7_Figure_13.jpeg)

![](_page_7_Figure_15.jpeg)

## PHENIX Detector System

- 2 central arms for photon, electron, hadron
  - tracking chambers
  - RICH, EMCal, ToF
- 2 forward arms for muon
  - tracking chambers
  - muon identifier
- global detectors for event characterization
  - beam/beam counter
  - zero-degree calorimeter
  - multiplicity/vertex detector

![](_page_8_Figure_11.jpeg)

### Electron Measurement in PHENIX

- $-0.35 < \eta < 0.35, \, d\phi = \pi/2 \times 2$
- charged particle tracking
  DC / PC / TEC (/ RICH / EMCal / ToF)
- hadron rejection at 10<sup>4</sup> level in Au+Au central collisions
  - RICH / EMCal / TEC

![](_page_9_Picture_5.jpeg)

• high momentum & mass resolution

![](_page_9_Figure_7.jpeg)

![](_page_9_Figure_8.jpeg)

May 24, 2000

### Muon Measurement in PHENIX

- $1.2 < \eta < 2.4$  (north),  $1.2 < \eta < 2.2$  (south), full  $\phi$  coverage
- tracking with 3 stations of chambers in magnetic field
- muon ID with 5 layers of steel absorber and Iarocci tubes

![](_page_10_Figure_4.jpeg)

### Event Characterization in PHENIX

- charged particle multiplicity  $(dN_{ch}/d\eta)$ 
  - silicon strip/pad multiplicity and vertex detector
  - $-2.5 < \eta < 2.5$ , full  $\phi$  coverage
  - resolution  $\sigma(N_{ch})/N_{ch} < 10$  % per 0.2 unit  $\eta$  bin
- electro-magnetic transverse energy (dE<sub>t</sub><sup>em</sup>/dη)
  - lead-scintillator and lead-glass calorimeter
  - $- 0.35 < \eta < 0.35, \, d\phi = \pi/2 \times 2$

![](_page_11_Picture_8.jpeg)

#### multiplicity/vertex detector

![](_page_11_Picture_10.jpeg)

electro-magnetic calorimeter on East arm

## Quarkonium Physics at RHIC / PHENIX

- a promising probe of quark-gluon plasma phase
- SPS NA50 observations
  - $\Psi(2S)$  strongly suppressed
  - step behavior of  $J/\Psi$  possibly due to  $\chi_c$  and  $J/\Psi$  dissolution
- expectation at RHIC, if scaled to energy density
  - $J/\Psi$  dissolution from semiperipheral collisions
- uncertainty factors
  - elementary production cross section
  - initial state suppression (gluon shadowing)
  - ordinary nuclear absorption
  - systematic studies required

![](_page_12_Figure_12.jpeg)

### Quarkonium Measurement in PHENIX

|                          | central (electron) arms                  | forward (muon) arms                   |  |
|--------------------------|------------------------------------------|---------------------------------------|--|
| rapidity coverage        | -0.35 < y < 0.35                         | 1.2 < y < 2.4 (north)                 |  |
|                          |                                          | 1.2 < y < 2.2 (south)                 |  |
| J/Ψ acceptance           | 0.8 % of $B_{ee}\sigma$                  | 4.3 % of $B_{\mu\mu}\sigma$ (per arm) |  |
|                          | (4 % of $B_{ee} \sigma$ in $ y  < 0.5$ ) |                                       |  |
| Y acceptance             | 1.7 % of $B_{ee}\sigma$                  | 3.0 % of $B_{\mu\mu}\sigma$ (per arm) |  |
|                          | (5 % of $B_{ee} \sigma$ in $ y  < 0.5$ ) |                                       |  |
| $J/\Psi$ mass resolution | 20 MeV                                   | 105 MeV                               |  |
| Y mass resolution        | 160 MeV                                  | 180 MeV                               |  |

• central arms also measure photons with fine granularity

– 1.9 %  $\oplus$  8.2 % /  $\sqrt{E}$  [GeV] for PbSc (75 % of coverage)

 $-1.0 \% \oplus 5.8 \% / \sqrt{E}$  [GeV] for PbGl (25 % of coverage)

## Quarkonium Statistics in PHENIX

#### • assumptions

- 1.6 nb<sup>-1</sup> integrated luminosity per year
  - RHIC nominal Au+Au luminosity of 2 x10<sup>26</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - 27 weeks running with 50 % duty factor

 $- B_{11}\sigma_{NN}(J/\Psi) = 400 \text{ nb}$ 

|                | central arms |           | forward arm (per arm) |             |
|----------------|--------------|-----------|-----------------------|-------------|
|                | 10 % central | min.bias  | 10 % central          | min.bias    |
| J/Ψ *          | ~ 70,000     | ~ 200,000 | ~ 350,000             | ~ 1,000,000 |
| Ψ(2S) <b>*</b> | ~ 1,400      | ~ 4,000   | ~ 7,000               | ~ 20,000    |
| Υ *            | ~ 80         | ~ 250     | ~ 160                 | ~ 500       |
| DY (> 4 GeV)   | ~ 250        | ~ 700     | ~ 1,500               | ~ 4,000     |

- \* absorption and suppression factors not included
  - *cf.* NA50 values for Pb+Pb at 158 A GeV ( $\sqrt{s} = 17$  A GeV)
    - 0.31 (J/Ψ, min.bias), 0.27 (J/Ψ, central), 0.06 (Ψ(2S))

## Systematic Studies of Q'm in PHENIX

- baseline p+p / p+A measurement
- $\sqrt{s}$  dependence
- rapidity / p<sub>t</sub> dependence
  - central and forward arms
  - $p_t$  from 0 to > 5 GeV/c
- $J/\Psi$  and  $\Upsilon$  families
  - $J/\Psi$ ,  $\Psi(2S)$ ,  $\Upsilon(1S)$ ,  $\Upsilon(2S+3S)$
- reference channels
  - continuum (charm, Drell Yan)
  - single lepton (charm)
  - single  $\gamma$
- high statistics analysis
  - detailed centrality dependence
  - $\ p + p \ \rightarrow \ \chi_c \ \rightarrow \ J/\Psi \ + \ \gamma$

![](_page_15_Figure_15.jpeg)

### Quarkonium in Central & Forward Arms

- simultaneous access to regions with different energy densities (or same energy density from different collision centralities)
  - rapidity density of produced particles as a measure
  - good test if suppression is a function of local energy density

![](_page_16_Figure_4.jpeg)

### **Open Heavy Flavor in PHENIX**

- heavy flavor (charm, bottom) production
  - probe of initial state (gluon shadowing)
  - good reference to  $J/\Psi$  production
- high p<sub>t</sub> single lepton •
- high mass di-lepton

![](_page_17_Figure_7.jpeg)

10<sup>7</sup> cmpzdalz200h.hb4

10

May 24, 2000

K.Shigaki at CIPANP 2000 in Quebec City

central Au+Au at RHIC

single electron spectrum

### LVM and Thermal $l^+l^-$ in PHENIX

- light vector meson  $(\phi, \omega, \rho)$ 
  - probe of chiral symmetry restoration
    - change in mass, width, branching ratio
  - separate  $\phi$  and  $\omega$ 
    - mass resolution < 5 MeV
    - $S/N \sim 1/10 (\phi), 1/15 (\omega)$
  - enhancement/melting of  $\rho$ 
    - *cf.* NA45 observation
- thermal di-lepton
  - possible mass window at 1~2 GeV
  - cf. direct photon

![](_page_18_Figure_12.jpeg)

## **Chronological Strategies of PHENIX**

- priorities in run 2000
  - a few  $\mu b^{-1}$  of Au+Au at  $\sqrt{s} = 140$  A GeV
  - first physics from γ, e, h measurement
  - (spin commissioning)
  - (p+p to characterize baseline)
- run 2001
  - Au+Au at  $\sqrt{s} = 200$  A GeV
  - additional  $\mu$  measurement
  - full coverage of MVD
  - greater sensitivity to rare probes in Au+Au
  - first results on spin physics
- run 2002 and later

![](_page_19_Figure_13.jpeg)

- continuing program of heavy ion and spin discoveries

# Upcoming Physics from PHENIX

- physics and time scales accessible in run 2000
  - initial hard process
    - jet, hard photon, high p<sub>t</sub> hadron
  - deconfinement
    - high-mass vector meson  $J/\Psi$ ,  $\Psi$ '
  - chiral restoration
    - low-mass vector meson  $\rho$ ,  $\omega$ ,  $\phi$
  - thermalization
    - soft photon, non-resonant dielectron
    - open charm via single electron
    - high  $p_t$  photon from  $\pi^0$ ,  $\eta$ ,  $\eta'$
  - hadronization
    - hadron spectra, strangeness, HBT interferometry
  - hydro-dynamics
    - transverse energy, dN/dy

# **Summary and Conclusions**

- RHIC is a unique facility to study QCD in extreme conditions and scales
  - construction phase has finished; first physics run starting in weeks
- SPS programs endorsed importance of lepton channels
- RHIC will address them in a systematic way
  - A+B capability from p+p to Au+Au
  - especially by the PHENIX experiment
- PHENIX is suited for physics via rare lepton probes
  - good PID; high resolution; wide kinematical coverage
  - high rate/statistics with selective multi-level triggering
  - wide variety of probes; many signatures; essentially all time scales
- first physics results from electron channels in 2000, as well as photon and hadron channels
- more systematic data (including muon channels) in 2001

May 24, 2000