Electron Trigger in PHENIX at RHIC

Kenta Shigaki for the PHENIX Collaboration

at APS April Meeting in Long Beach, CA on May 1, 2000

Presentation Outline

- PHENIX Experiment at RHIC
- Electron Identification Devices of PHENIX
- Needs for Electron Trigger in PHENIX
- Electron Trigger Scheme
- Simulation Studies
 - Simulation Method and Data Sets
 - Trigger Efficiency for Vector Meson Signals
 - Trigger Rates
- Summary

PHENIX Experiment at RHIC

- experimental study of QCD under extreme conditions
 - search for and characterize deconfined QGP phase
- wide variety of probes
 - emphasis on transparent probes
- detector systems
 - 2 central arms for photon, <u>electron</u>, hadron
 - 2 forward arms for muon
 - global detectors for event characterization

K.Shigaki at APS April Meeting in Long Beach, CA

Electron ID Devices of PHENIX

- RICH
 - primary eID device
 - $|y| < 0.35; d\phi = \pi/2 \times 2$
 - CO_2 / C_2H_6 gaseous radiator
 - 5,120 PMT readout
- EMCal
 - γ / eID with fine granularity
 - PbSc (75% of coverage)
 - 15,552 PMT readout
 - PbGl (25% of coverage)
 - 9,216 PMT readout
- TEC
 - helps PID in mid-p_t region

Needs for Electron Trigger in PHENIX

- reaction rates (w/ RHIC design luminosities)
 - 200 A GeV Au+Au
 - 6 barn \times 2e26 cm⁻²sec⁻¹ = 1.2 kHz
 - 200 GeV p+p
 - $50 \text{ mb} \times 8e30 \text{ cm}^{-2} \text{sec}^{-1} = 400 \text{ kHz}$ (4 MHz later)
 - 500 GeV p+p
 - $60 \text{ mb} \times 2e31 \text{ cm}^{-2} \text{sec}^{-1} = 1.2 \text{ MHz} (12 \text{ MHz later})$
- DAQ capability
 - designed at 25 kHz (6 kHz initially)
- electron trigger in p+p and light A+A for systematic studies of rare physics probes
 - J/Ψ , ϕ , ω , ρ (di-electron)
 - charm (single electron)

Electron Trigger Scheme

- front-end
 - EMCal level-1 trigger
 - max. 172 bits from overlapping 4x4 PMT sums, 36 tiles OR'ed
 - RICH level-1 trigger
 - max. 256 bits from non-overlapping 4x5 PMT sums
- EMCal-RICH look-up
 - based on EMCal and RICH level-1 information
 - hardware layouts under discussion
- simulation studies ongoing to finalize specifications
 - evaluate trigger performance
 - establish trigger hardware specifications and design
 - segmentation and rejection power
 - look-up scheme and trigger efficiency
 - single / double electron trigger

Simulation Method and Data Sets

- simulation method
 - PHENIX full simulation chain
 - compare EMCal alone and RICH-EMCal triggers
 - present RICH-EMCal look-up scheme
 - 8 trigger blocks per central arm
 - 1-to-1 AND of 16 bits (RICH) + 16 bits (EMCal)
- vector meson signals
 - 60K single J/Ψ (0.0 < p_t < 8.0 GeV/c) $\rightarrow e^+e^-$
 - 54K single ϕ (0.0 < p_t < 4.0 GeV/c) \rightarrow e⁺e⁻
 - PHENIX pair acceptance cut
- minimum-bias backgrounds
 - 12K Au+Au, 6K Ag+Ag, 12K Si+Si from HIJING
 - 85K p+p from PYTHIA

- plot (by T.Matsumoto and KS) :
 - blue: EMCal alone
 - red: RICH-EMCal lookup
 - solid: single electron trigger
 - broken: double electron trigger
- single electron trigger
 - threshold needs to be < 1.2 GeV
- double electron trigger
 - p_t dependent trigger bias

- plot (by T.Matsumoto and KS):
 - blue: EMCal alone
 - red: RICH-EMCal lookup
 - solid: single electron trigger
 - broken: double electron trigger
- single electron trigger
 - threshold needs to be < 0.6 GeV
 - close to EMCal hardware limit
- double electron trigger
 - low trigger efficiency
 - p_t dependent trigger bias

K.Shigaki at APS April Meeting in Long Beach, CA

Electron Trigger Rates

- plots: single electron trigger rates with RHIC design luminosities
- EMCal alone
 - *e.g.* in p+p at 200 GeV
 - 4 kHz at 1.0 GeV threshold
 - 30 kHz at 0.5 GeV threshold
 - marginal for J/Ψ
 - insufficient for ϕ (and maybe c)
- RICH-EMCal
 - *e.g.* in p+p at 200 GeV
 - < 0.1 kHz at 1.0 GeV threshold
 - 0.6 kHz at 0.5 GeV threshold
 - sufficient rejection even with future RHIC upgrade

Summary

- PHENIX level-1 electron trigger under development
 - essential for systematic studies of single- and di-electron channels
 - rare physics probes such as J/Ψ , ϕ , ω , ρ , charm, ...
 - from p+p, light A+A, to Au+Au
- simple RICH-EMCal look-up proved promising
 - single electron trigger preferred to minimize trigger bias
 - allows electron threshold « 1 GeV
 - required for ϕ and charm (single electron) trigger
 - triggering on ϕ might be difficult due to a hardware limitation
 - works at RHIC design luminosity and with future upgrade
- hardware work ongoing
 - level-1 trigger hardware for RICH and EMCal in final design stage
 - RICH-EMCal look-up scheme under study to finalize hardware specifications