

Measurement of Identified Charged Pions at High p_t in PHENIX Year 1

Kenta Shigaki (KEK) at PHENIX Hard Scattering PWG Meeting On February 10, 2000

Presentation Outline

- Physics Goals and Approaches
- How Well Can We Measure Identified Charged Pions (and Kaons) at High p_t in Year 1 ?
 - Statistics in Year 1
 - Momentum Resolution
 - PID Capability
- Summary, Concerns, Homework

Physics Goals and Approaches

- high p_t tail of identified π^+ and π^-
 - quark energy loss (jet quenching)
 - tracking + RICH
- π^+/π^- ratio at high p_t
 - quark fragmentation dominance
 - tracking + RICH
- K/ π ratio at high p_t
 - quark fragmentation dominance / HI effects at low p_t
 - tracking + RICH + TOF

Quark Energy Loss & Jet Quenching

X.-N.Wang, PRC58 (1998) 2321 Au+Au at $\sqrt{s} = 200 \text{ GeV}$

- good year 1 physics
 - cross checking with inclusive γ and π^0 measurement
 - feasible with PHENIXYear 1 configuration
- benefit of π ID
 - (identified π : inclusive *h*) ~ (π^0 : inclusive γ)

Quark Fragmentation Dominance

p+p, Au+Au at $\sqrt{s} = 200 \text{ GeV}$

p+p, π^- +p at E_{lab} = 200 GeV

CERES Pb+Pb

Expected Pion Statistics in Year-1

- assumptions
 - $-\sqrt{s} = 200 \text{ GeV}$ (no longer correct)
 - integrated luminosity = 20 μ barn⁻¹
 - 2 full central arms (DC/RICH)
- employed generators
 - HIJING minimum bias Au+Au
 - PYTHIA p+p scaled to Au+Au
- statistical limit ~ 10 GeV
 - $\sim 10^3$ counts/GeV/charge state at $p_t = 10$ GeV
 - jet quenching should be clearly observable

Expected Pion Statistics in Year-1

February 10, 2000

Momentum Resolution

- momentum resolution estimated in MDC-2
 - perfect tracking with detector resolution by J.Lajoie
 - -2 % at $p_t = 5$ GeV, 4.5 % at 10 GeV with DC only
 - ~ 2 % at $p_t < 10$ GeV with DC + TEC
 - good enough for the physics goals
- *cf.* EMCal resolution for π^0
 - beam test analysis by A.Bazilevsky, H.Torii
 - $-1.9\% \oplus 8.2\% / \sqrt{E}$
 - 4 % for π^0 at 5 GeV, 3 % at 10 GeV

Momentum Resolution

EMCal Resolution

Particle Identification Capability

- RICH with CO₂ in Year 1
 - $\gamma_{th} = 33$
 - $-\pi$ threshold = 4.7 GeV
 - effective π ID above ~ 5.5 GeV
 - π ID requirements much less stringent compared to eID
- TOF
 - p/K track-by-track (4 σ) separation up to 4.0 GeV
 - p/K separates at 2σ at 6 GeV;
 - yields should be accessible via multi-parameter fitting
 - momentum window for p/K/ π yields

February 10, 2000

February 10, 2000

14

- effective π ID range
 - above ~ 5.5 GeV with CO₂
 - *cf.* above ~ 4.0 GeV with C_2H_6

February 10, 2000

Summary, Concerns, Homework

- high p_t charged pions can be measured in Year 1 with tracking (DC) and RICH
 - measurable p_t range : from ~ 5.5 GeV to ~ 10 GeV
 - jet quenching should be clearly observable
- $p/K/\pi$ ratio also can be measured in a small p_t window with tracking/RICH/TOF
- need to reevaluate statistics with up-to-date Year 1 conditions
 - $-\sqrt{s} = 150 \text{ GeV}$?
 - integrated luminosity ?
- need to tune RICH PID for near-threshold π ID