

Heavy Ion Physics with Electron Trigger

or

How does an Enhanced Level-1 Trigger make Everyone in PHENIX Happy ?

Kenta Shigaki (KEK) at PHENIX Spin Physics Working Group Meeting On November 11, 1999

PH*ENIX

Presentation Outline

- Importance of p+p for Heavy Ion Physics
- Electrons to be Triggered
- LV1 Electron Trigger Rate Evaluation
- Heavy Ion Physics Gain
 - with Enhanced LV1 Electron Trigger
- RICH LV1 Trigger
- Possible EMCal+RICH Trigger Schemes
- Summary

Boundary Conditions for LV1 Trigger

- reaction rates (w/ BBL)
 - 200 A GeV Au+Au
 - 6 barn x 2e26 cm⁻²sec⁻¹ = 1.2 kHz
 - 200 GeV p+p
 - 50 mb x 8e30 cm⁻²s $ec^1 = 400 \text{ kHz}$ (4 MHz later)
 - 500 GeV p+p
 - 60 mb x 2e31 cm⁻²sec⁻¹ = 1.2 MHz (12 MHz later)
- PHENIX DAQ capability
 - designed for 25 kHz (6 kHz initially)
 - proven to work at > 1 kHz

Importance of p+p for Heavy Ion Physics

- "spin : heavy ion" ≠ "p+p : A+A"
- p+p data is essential to understand A+A data
 - no p+p data at the RHIC energy
 - only limited data at the ISR energy up to $\sqrt{s} = 63 \text{ GeV}$
 - uncertainty in p+p can easily overshadow new phenomena in Au+Au
 - true for basically all physics probes
 - J/Ψ , ϕ , ω , ρ , charm, ...

PH*ENIX

El ectrons to be Triggered

- single electron threshold for J/Ψ
 - 1 ~ 1.5 GeV
- single electron threshold for \$\$
 - 300 ~ 500 MeV
- single electron threshold for charm
 - 500 MeV ~ 1 GeV (study needed)

November 11, 1999

K.Shigaki at PHENIX Spin PWG Meeting

LV1 Electron Trigger Rate Evaluation

plots: LV1 single electron trigger rates with BBL

- EMCal trigger with light collision systems :
 - cannot go down « 1 GeV with BBL
 - marginal for J/Ψ
 - insufficient for ϕ , ω , ρ and charm
 - does not sustain x10 BBL
- EMCal + RIC Htrigger :
 - can go as low as ~500 MeV even with x10 BBL

K.Shigaki at PHENIX Spin PWG Meeting

Heavy Ion Physics Gain with **Enhanced** LV1 Electron Trigger

- high luminosity runs
 - p+p and light A+A
 - at BBL and with future RHIC upgrade
- lower electron th reshold
 - can go down « 1 GeV
- access to rare probes
 - J/Ψ , ϕ , ω , ρ (di-electron)
 - charm (single electron)
- essential to systematic studies of virtually all single/di- electron channels

PH*ENIX

Further Consideration

(thanks to Y.Akiba for inputs, suggestions and discussions)

- Can we really measure low energy single electron in p+p ?
 - Dalitz decay and γ conversion background dominate
 - good chance of rejection with MVD
 - study by H.D.Sato
- Do we really need high statistics J/Ψ data in p+p ?
 - to better understand J/Ψ production mechanism
 - *e.g.* χ_c contribution
- Is the trigger of any use for Au+Au ?
 - very peripheral events might be interesting

RICH LV1 Trigger

- RICH FEM has non-overlapping 4x5 PMT tiles
 - analog sum made on AMU/ADC board andbackplane
 - $-4(\phi) \ge 8(z)$ tiles per "sector"
 - analogous to EMCal FEM units (3 x 6 for PbSc, 4 x 8 for PbGl)
 - 256 segment ations
 - analogous to EMCal's 172 ETB's (108 for PbSc, 64 for PbGl)
- LV1 board development being suspended
 - flexible to accommodate trigger needs

November 11, 1999

K. Shigaki at PHENIX Spin PWG Meeting

Possible EMCal+RICH Trigger Schemes

- in put :
 - maximum 172 bits from EMCal (Ersatz) LV1
 - maximum 256 bits from RICH LV1
- EMCal RICH look-up
 - an example : simple 1/2 sector matching (16 bits each)
 - EMCa1: 3x3 (PbSc) / 4x4 bits (PbGl) OR'ed
 - RICH : 4x4 bits (= 1 readout FEM) OR'ed
 - fi ner segmentation for better rejection power?
 - overlapping look-up for higher efficiency ?
- consideration :
 - trigger performance versus cost

Su mmary

- LV1 electron trigger wanted for HI physics, too
 for high luminosity p+p and light A+A runs
- threshold should go down to $300 \text{ MeV} \sim 1 \text{ GeV}$
 - to cover many physics probes J/Ψ , ϕ , ω , ρ , charm, ...
- EMCal RICH look-up allows it (EMCal alone does not)
 - allows electron threshold « 1 GeV
 - sustains x10 BBL
- studies needed to finalize the design include :
 - effect of trigger tile size
 - effect of inter-detector look-up scheme
 - their impact on cost

Rejection Power for Min.-Bias Events

November 11, 1999

K.Shigaki at PHENIX Spin PWG Meeting