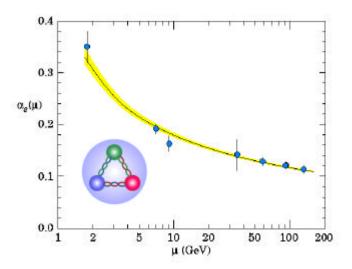
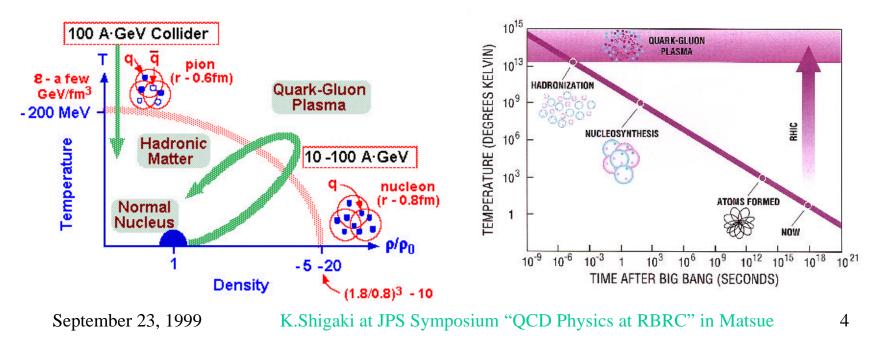
Experimental Relativistic Heavy Ion Physics at BNL-RHIC with a focus on PHENIX Experiment


Kenta Shigaki (KEK) at JPS Symposium "QCD Physics at RBRC" in Matsue, Shimane, Japan On September 23, 1999

Presentation Outline

- Relativistic Heavy Ion Physics at RHIC
- RHIC Accelerator
- RHIC Experiments
- Physics Strategies of PHENIX Experiment
- Upcoming Physics from PHENIX
- Electron Measurement in PHENIX
- Summary

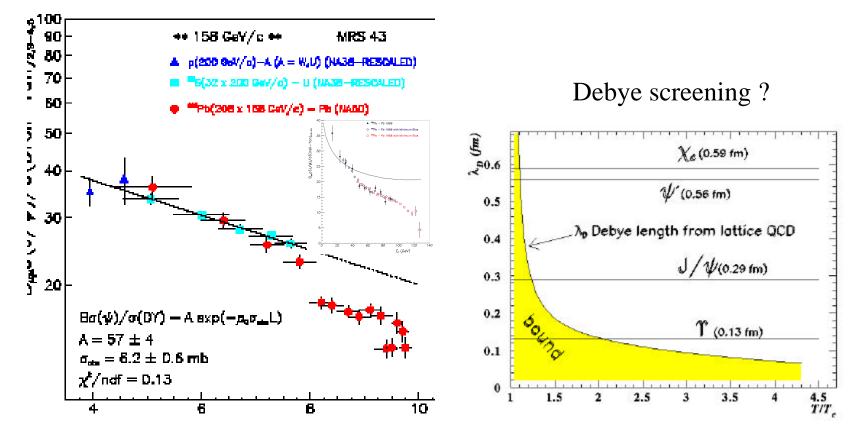
Physics at RHIC


- QCD in extreme conditions and scales
 - high energy density limit (relativistic heavy ion physics)
 - high Q^2 limit (high energy spin physics)
- relativistic heavy ion physics
 - search for and characterize deconfined quark gluon plasma phase
- high energy spin physics
 - elucidate spin structure of nucleon
 - talk by M.Grosse-Perdekamp

asymptotic freedom at short range / high energy

Relativistic Heavy Ion Physics at RHIC

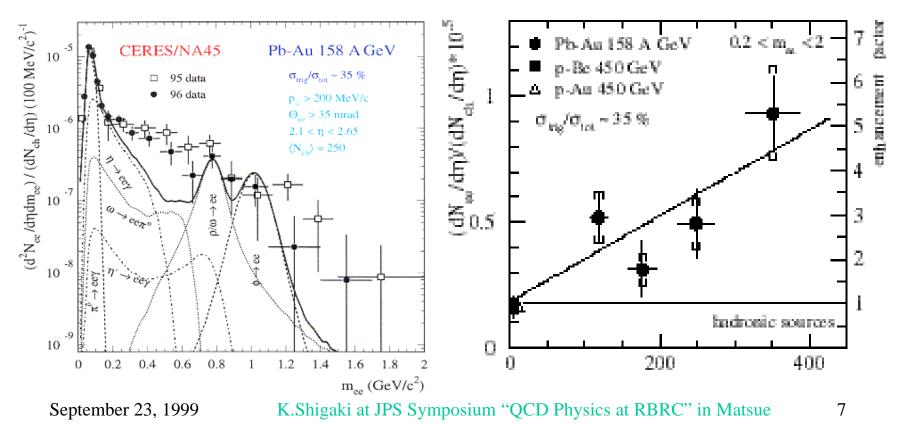
- Bevalac/SIS/AGS/SPS
 - from high density regime to high energy density
 (*temperature*) regime
- RHIC
 - reproduction of universe a few μ sec after big-bang


Recent Hot Topics from SPS and AGS

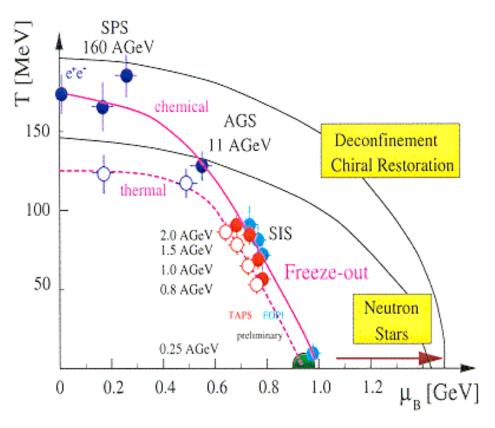
- J/Ψ "anomalous" suppression
 - SPS NA50
- low-mass dielectron enhancement
 - SPS NA45 (CERES)
- flavor equilibrium
 - AGS E866, E877
 - SPS NA49, WA97
- collective radial/directed/elliptic flow
 - AGS E866, E877, E895, E917
 - SPS NA45, NA49, NA52, WA98
- onsets of QCD phase transition ?

J/Ψ "Anomalous" Suppression

• observed in central Pb+Pb collisions by SPS NA50


• predicted by T.Matsui and H.Satz

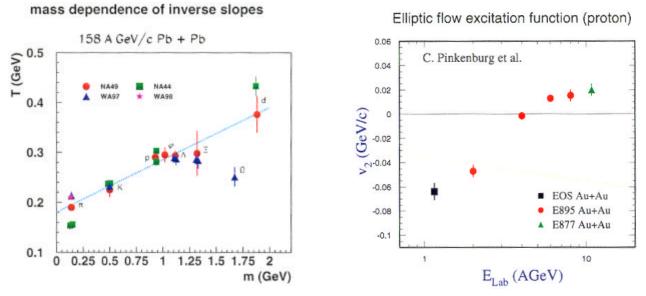
September 23, 1999

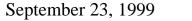

Low-Mass Dielectron Enhancement

- excess over known hadronic sources observed in S+Au and Pb+Au collisions by SPS NA45
- theoretical approaches *e.g.* ρ enhancement/melting

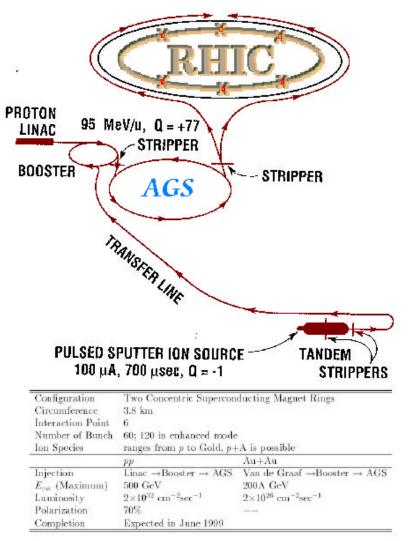
Flavor Equilibrium

- phase diagram of hadronic matter based on hadrochemical analysis
 - P.Braun-Munzinger, J.Stachel et al.




- hadro-chemical freezeout points approach phase boundary at AGS and SPS
- RHIC and LHC expected to show clearer signal of QCD phase transition

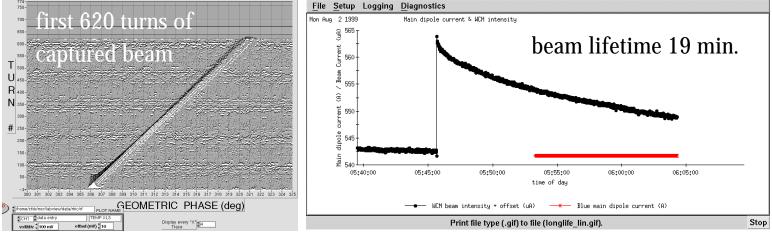
September 23, 1999


Collective Radial/Directed/Elliptic Flow

- radially flowing thermal source explains mass dependence of *temperature* parameters
 - theory by U.Heinz et al. ; phenomenology by N.Xu et al.
- directed/elliptic flow as an excitation function
 - information on shadowing, equation of state

RHIC (Relativistic Heavy Ion Collider) Accelerator

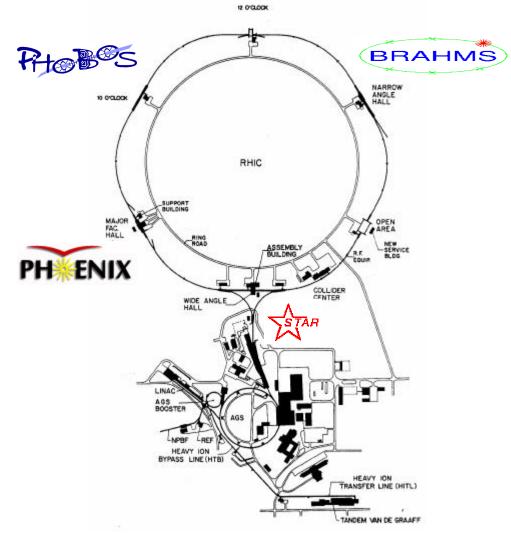
- ultimate tool with:
 - 2 superconducting rings
 - 3.8 km circumference
 - 6 intersecting locations
 - AGS complex as injector
- heavy ion collider
 - up to Au+Au at 200 A GeV
 - current max.: 18 A GeV (SPS)
 - capable of p+p, p+A, A+B
 - polarized proton collider
 - up to 500 GeV
 - current max.: 20 GeV (FNAL)
 - RIKEN BNL collaboration


September 23, 1999

Status of RHIC Accelerator

September 23, 1999

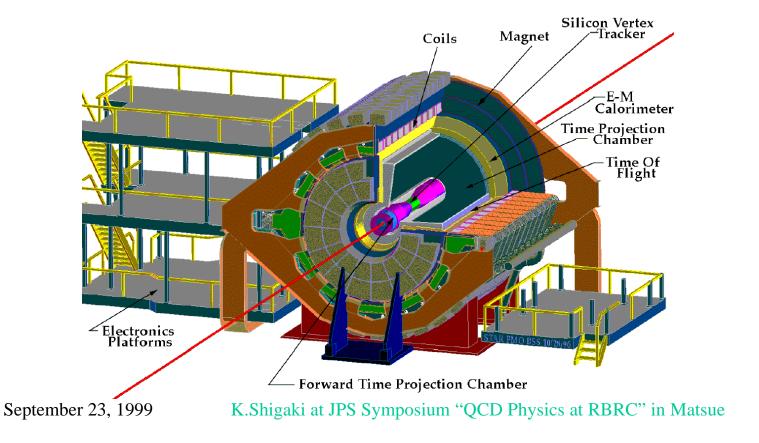
- construction phase finished in August, 1999
- physics run starting in January, 2000



K.Shigaki at JPS Symposium "QCD Physics at RBRC" in Matsue

11

RHIC Experiments

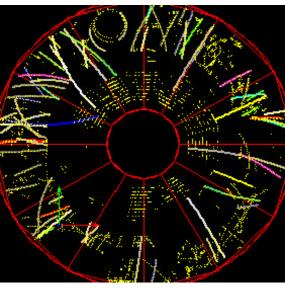


- complimentary set of experiments
- 2 large experiments
 - STAR at 6 o'clock
 - PHENIX at 8 o'clock
- 2 small experiments
 - BRAHMS at 2 o'clock
 - PHOBOS at 10 o'clock
- 2 open collision points for future experiments

September 23, 1999

STAR (Solenoidal Tracker at RHIC) Experiment

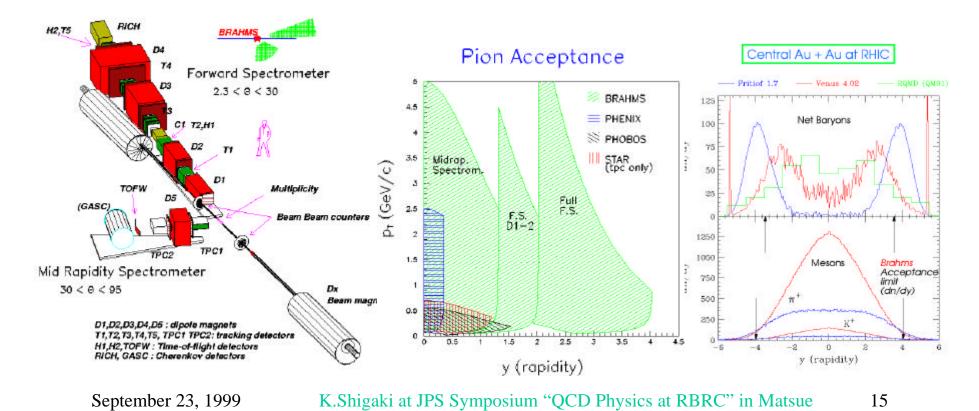
- ~ 440 collaborators, 36 institutions, 7 countries
- large TPC-based detector system
 - event-by-event recording of hadrons and jets



13

Status of STAR Experiment

• baseline construction completed in June, 1999

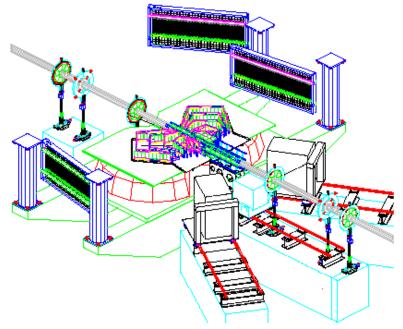


beam-gas interaction event

September 23, 1999

BRAHMS (Broad Range Hadron Mag. Spec.) Exp.

- ~ 50 collaborators, 12 institutions, 6 countries
- identified charged hadrons over wide kinematics
 focus on reaction dynamics

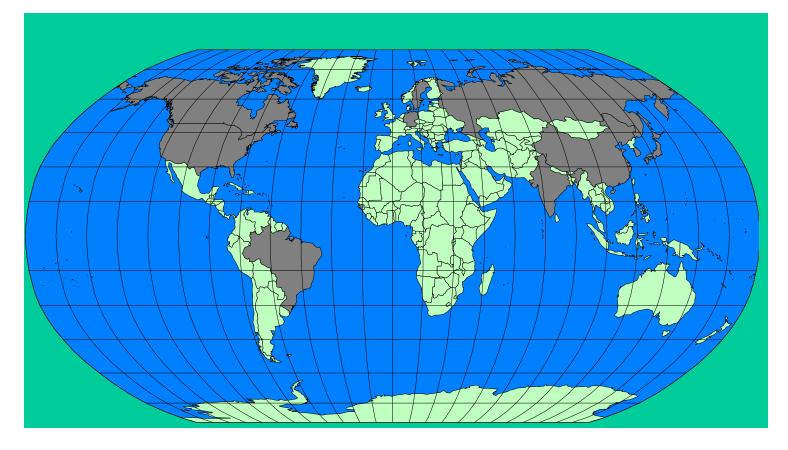

Status of BRAHMS Experiment

• baseline components ready on both arms

PHOBOS Experiment

- ~ 80 collaborators, 9 institutions, 3 countries
- 10K element 4π detector for $d^2N/d\eta d\phi$
- two-arm small silicon pad spectrometer
- high rate capability, minimum bias events to tape

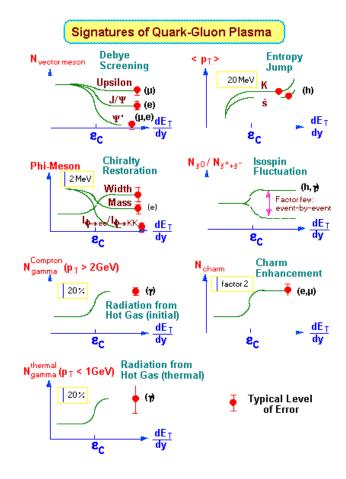
Status of PHOBOS Experiment


- all silicon detectors assembled and tested
 - multiplicity and vertex detectors
 - one spectrometer arm

September 23, 1999

PHENIX (Pioneering High Energy Nucl. Ion Exp.) Exp.

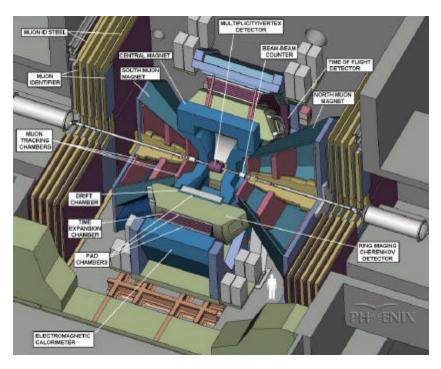
- ~ 430 collaborators, 42 institutions, 11 countries
 - wide collaboration for wide physics


September 23, 1999

Physics Strategies of PHENIX

• wide variety of probes with same systematics

sensitivity to many signatures and essentially all time-scales


- color Debye screening
- chiral symmetry restoration
 - change of vector meson properties
 - disoriented chiral condensation
- thermal radiation of hot gas
- heavy quark (s, c) production
- jet quenching
- emphasis on transparent probes
 - photon and vector meson via γ , γ^* , l^+l^-

September 23, 1999

PHENIX Detector System

- 2 central arms for photon, electron, hadron
 - tracking chambers
 - RICH, ToF, EMCal
- 2 forward arms for muon
 - tracking chambers
 - muon identifier
- global detectors for event characterization
 - beam/beam counter
 - multiplicity/vertex detector

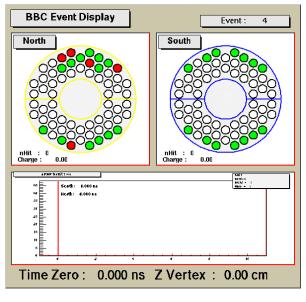
Japanese Contributions to PHENIX (1)

- beam/beam counter
 - Hiroshima U.
- ring imaging Cherenkov detector
 - CNS, U.Tokyo, KEK, Waseda U., Nagasaki IAS
 - talks by K.Oyama, T.Sakaguchi (25, a.m., SB)
 - symposium talk by Y.Akiba (25, p.m., SA)
- time of flight counter
 - U.Tsukuba
- south muon spectrometer
 - RIKEN, Kyoto U., TIT
 - talk by H.D.Sato (25, p.m., SC)

Japanese Contributions to PHENIX (2)

- central magnet coil, drift chamber readout chip
 KEK
- regional computing center in Japan
 - RBRC, RIKEN, CNS, Kyoto U., KEK, etc.
 - talks by N.Hayashi, S.Sawada (25, p.m., SC)
- other hardware/software activities
 - talk by H.Torii (25, a.m., SB) on EMCal beam test
- RHIC (not only PHENIX) polarimeter
 - RBRC, RIKEN, Kyoto U.
 - talk by J.Tojo (25, p.m., SC)

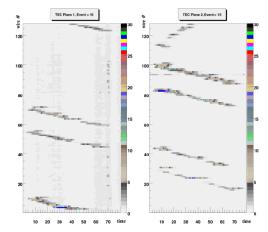
PHENIX J Members at BNL



September 23, 1999

Status of PHENIX Experiment (1)

- west central arm
 - loaded with DC, PC, RICH, EMCal
 - tested with beam in June-August, 1999


beam/gas interaction event in beam/beam counter

September 23, 1999

Status of PHENIX Experiment (2)

- east central arm
 - being assembled for installation in March, 2000
 - will have DC, PC, RICH, TEC, ToF, EMCal
- south/north muon arms
 - identifiers installed
 - trackers in year 2/3

beam/gas interaction event in two planes of TEC

September 23, 1999

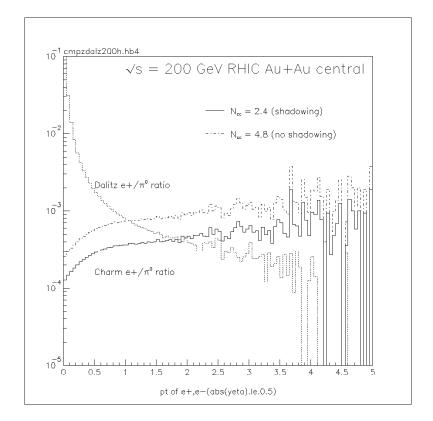
Chronological Strategies of PHENIX

- priorities in year 1 (2000) in descending order
 - first physics from Au+Au at 200 A GeV
 - > 120 M unbiased events (> 20 μb^{-1} integrated luminosity)
 - polarized proton commissioning in one ring
 - ~ 4 weeks
 - p+p running to characterize baseline physics
- year 2

greater sensitivity to rare probes in Au+Au

first results on spin physics

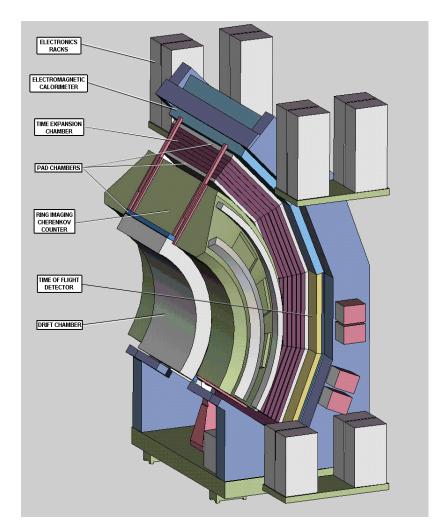
year 3 and later


continuing program of heavy ion and spin discoveries

Upcoming Physics from PHENIX

- physics and time scales accessible in year 1
 - initial hard process
 - jet, hard photon
 - deconfinement
 - high-mass vector meson J/Ψ , Ψ '
 - high p_t photon from π^0 , η , η'
 - chiral restoration
 - low-mass vector meson ρ , ω , ϕ
 - thermalization
 - soft photon, non-resonant dielectron
 - open charm via single electron
 - hadronization
 - hadron spectra, strangeness, HBT interferometry
 - hydro-dynamics
 - transverse energy, dN/dy

Electron Measurement in PHENIX


- probes of particular importance
 - dielectron spectra
 - single electron spectra
- background sources
 - Dalitz decay
 - heavy quarks
 - photon conversion
 - hadron mis-identification
- requirements for eID
 - roughly $10^2 \sim 10^4$
 - physics goal dependent
 - p_t dependent

expected e/π ratio

Electron ID in PHENIX Central Arms

- charged particle tracking
 - DC, PC, TEC
 - (RICH, ToF, EMCal)
- electron identification
 - RICH
 - ring finding
 - EMCal
 - energy / momentum matching
 - time of flight
 - shower shape
 - TEC
 - energy deposit

September 23, 1999

PHENIX RICH Detector

schematics of PHENIX RICH

- primary electron identification device
- full coverage of central arm acceptance
- threshold gas Cherenkov
 - $C_2 H_6 (\gamma_{th} \sim 25)$
 - CO₂ ($\gamma_{th} \sim 35$) for year 1
 - eID p_t range : 0.2 ~ 4 GeV/*c*
- PMT array readout
 - 5,120 channels in 2 arms
 - ~ 1 degree x 1 degree pixels

PHENIX RICH Group

- CNS, U.Tokyo
- Florida State U.
- KEK
- Nagasaki IAS
- ORNL
- SUNY at SB
- U.Tokyo
- Waseda U.

H.Hamagaki, S.Nishimura, K.Oyama, T.Sakaguchi

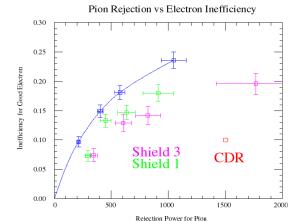
- R.Chappell, D.Crook, A.D.Frawley
 - Y.Akiba, K.Shigaki
 - K.Ebisu, H.Hara, Y.Tanaka, T.Ushiroda
 - M.S.Emery, S.Frank, J.P.Jones, C.Moscone, J.W.Walker, A.L.Wintenberg, G.R.Young
 - R.Begay, J.Burward-Hoy, J.Ferriera, T.K.Hemmick, R.Hutter, S.Salomone
 - R.S.Hayano
- M.Hibino, S.Kametani, J.Kikuchi, T.Matsumoto, M.Tamai

Status of PHENIX RICH Detector

- both arms of RICH completed
- first arm installed on PHENIX west arm

PMT array in RICH gas vessel

PMT arrays reflected on mirrors; before installation of front window

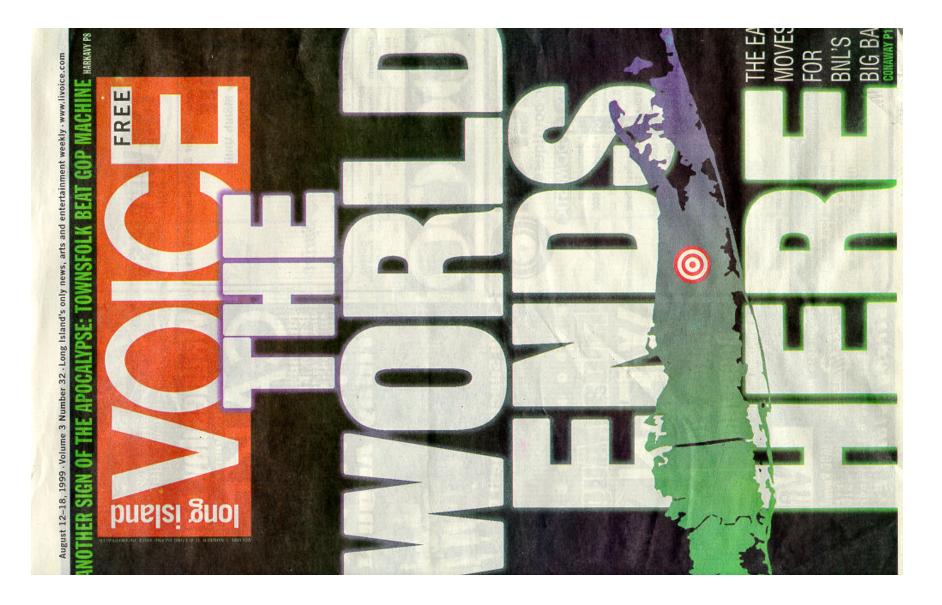


33

September 23, 1999

Electron Capability of PHENIX

- hadron rejection power of RICH
 - -10^4 level for single track
 - 200 ~ 1,500 in central Au+Au
- hadron contamination in electron measurement
 - ~ 20 % for single electron
 - ~ 50 % for dielectron
- signal to background ratio for vector mesons
 - $\sim 1/10$ for ϕ
 - $\sim 1/15$ for ω
 - < 1/100 for ρ



simulated dielectron spectrum *"identified*" electrons real electrons only no γ conversion ω ρ ϕ J/Ψ

34

Summary

- RHIC is a unique facility to study QCD in extreme conditions and scales through two-fold approaches
 - relativistic heavy ion physics
 - high energy spin physics (*ref.* talk by MGP)
- construction phase of RHIC has finished; operation started in 1999
- first physics run starts in January, 2000
- experiments are ready to look at Au+Au collisions
 - aiming at discovery of quark gluon plasma phase
- be prepared...

