" Avague discomfort at the thought of the chemical potential is
still characteristic of a physics education. This intellectual gap
is is due to the obscurity of thewritingsof J.Willard Gibbs
who discovered and understood the matter 100 years ago.""

C.Kittel; Preface to his book : Introduction to Solid State Physics

Lets first remind ourselves of the definition of the
chemical potential u. We startwith a systemof energy
E and Volume V and several kinds of species labeled
by 1. The number of each kind is N; . The entropy if
the system is a fuction of the following variables
S=S(E, V, Nij) wecan thenwrite
ds = (%)V’N dE + (g—i)E’N dvﬁuzi (;‘TS
where keeping N constant means
that you keep all N " s constant except
N; . Now i f we remember that dS = $ = m
when the number of particles is kept
constant we can i1dentify
($)V,N = Ti and (g_\S/)E,N = %
and we will define the chemical potential u; =

_T(diNSi-)E,V,N

sodS= £ + £ dv-3; 4 oN;

)E,V,N dNi
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We can rewritethisasdE = TdS — pdV + Z ui dN;
i

Now lets assume we have a process where S, V,

dE
and N are kept constant then we can also write u; = (—)
S\V,N

[
The Helmholtz free energy isdefinedasF = E - TS
dF =d(E-TS)=dE-TdS-SdT =
TdS—pdV + ) i dN; = TdS — SAT = —SdT - pdV + ) p; dN;
i i

dF
If we have a processwhere T, V, N are keptconstantthen u; = (—)
TV.N

i
Here you can see that the idea that the chemical potential is the energy
needed to create a particle is consistent with the definition.
Finally the Gibbs Free energy isdefinedas G = F + pV
dG =

—SdT - pdV + Z“i dN; + pdV + Vdp = —=SdT + VdP + Z“i dN;
i i

dG
If we have a processwhere T, p, N are kept constant then p; = (—)
T,0.N
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Now lets treat a problem where we only have two types of molecules for the
moment (like ice and water) which transform into each other 1 to 1 at
some sort of phase transition. I will loosten this requirment up later. We
keep the energy constant and the volume constant and maximize the
entroy to find the equilibrim conditions. So we have as constraints

E, + E, = E = Constant, V; +V, =V = Constant,

N; + N, =N = Constant

and we maximize S =
S (E. vi, Ny, E;, Vo, N,) So lets do this.

dS=dSl+d82=0

and using what we found for dS above

ds =

1 1
(—dE1+&dvl—ﬂdN1)+(—dE2+EdV2—£dN2)=O
1 Ty Ty T T T

we use the constraints in diferential form
dE,+dE, =dE=0, dV1+dVo,=dV =0,
dN1+dN2 =dN =0

dS=(i—i]dEH(E—E)dvl—(ﬂ—ﬂ)m:o

LET P LET P LER
Since this must be true for arbitrary dg, dV, dNwe get
1 1
— - — =0 b _ P =0; B _R = 0 and finally we get
LER P LER P LER P

T1=T,; PL=Py; p1=Hy;

Its clear that the temperatures and pressures must be equal. What helps ,

is to think about the chemical potentials as

H1 (T, p) = H2 (T, p)
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Now lets go to the problem we are interested in. I will now have a reaction u +
d «— x (its a funny pion)

I willwriteitas —u—-d+x=0.

We will write a general chemical equation in

the form

3
Z bi Bi = 0 where we have the various species denoted by B; —
i=1

inthiscasetheb;'sare —1 —1and1, andtheBj'sareudx

We will hold the volume and energy constant. The numbers of the species
Nj cannot vary arbitrarily because we have to end up conserving the
qguarks whether they are free or bound up ina pion. The constraint
equation (instead of N; + N, = N = constant) is dN; = Ab;

where A is a constant of proportionality. We will once again

maximize the entropy to find the equilibrium conditions
i.e.setdS = 0. Again use the equation from above

1 A
dS=—dE+£dV—ZﬂdNi ~0
T T T

Zﬂi dN; =0sincedV =0anddE =0
i
Now using the constraint eqn we get Z uiAbi =0
i

and finally we get the condition for chemical equilibrium
Z biui=0
i

Now suppose we had made assumed that T and V are constant,
then we would have used the condition that F is minimum and
gotten the same egn. The chemical potential are functions of
the particular variables describing the system. For instance y;
= u; (E, V, Ny if Eanv V are chosen as the independent variables etc.

So now we see that for baryons u, = 3 pgq
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How do we use all of this? If one knows the Free energy F (T, V, Nj),
we assume that a transition occurs between the species. To

find the equilibrium conditions we minimize the free energy
dF = Z/,ti bj=0

dF
where uj = (—) The task is then to find the free
TV.N

energy and hence the chemical potentials of the system

Now I will attempt to do this for an ideal gas, i.e. lets assume that the u,
d quarks and pions behave as an ideal gas. Now let the possible states
of a particles be labeled by sx and € be the energy in this state
E =€ (51) +€(S2) + €3(S3) + €1 (Sa) + € (S5) + ...
to the total number of particles.

We can write the partition functionas Z' =

D expl—PBles (s1) + €2 (52) + €5 (53) + €4 (S4) + €5 (S5) + ..]} =

1,52, S3,

[ Z e—hPea (51)] [ Z e~Pe (Sz)] [ Z =P (53)]
S1 Sp S3

In the following
l=u,2=d, 3=nx
There will be N; factors for all species of types 1, 2,

3 and we define the partition function for a single particle
é‘i — Z e_ﬁf(s)
S

SoZ' = 4™ &M N Now we need to fix things up for indistiguishability
oM 5" g™ &t

i I
Z= m —Z]_ZQZgWthG Zi= N_i!andInZ—Zilani,

This last egn is an important relation since it states that the

partition functions are just the sum of the partition functions of
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the various species and the thermodynamic functions (E, F, G)
are simply addative. This of course assumes that the molecules
are weakly interacting. All this stuff is classical and will for
guantum mechanics correspond to Maxwell Boltzmann statistics
which is probably ok for the temperatures we will be dealing with

Now lets calculate the chemical potential from the free energy

F=—KTInZ = KT )" (NiIng = InN;1) = —=KT " N; (Ing; = InN; + 1)

where | have used Stirlingsformulalnn! =

ninn—n — another useful formulais

din(N!
an®™Y N
dN
(dF] KT (ng. — InN) = —KT In 3
puj=|— =— ng; — InN;j) = =kT In —
de TV.N : N;j

Lets now get the equilibrium constant from chemistry and then |
will figure out what that constant is for some quarks and hadrons
If you forgot what an equilibrium constant is
(and the law of mass action) suppose you make water
-2H;-0,+2H,0=0
then we can know how much we have of each

if we know the equilibrium constant K defined as

Kn (T, V) = ——
Nu,“ No,
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The free energy change is
dF =" mibi = —KT > b; (Ing; — InNp) = dFo + KT > by InN;
where dFg = =KT Z bi Ing;

dFo is the "'standard free—energy change of the reaction™ which depends
on T andV butnoton N;j. Itiss an intensive variable. We want to set
dF = 0o we get

—dF
=) b InN; = In (N{® NP2 N3 .
KT Z i i ( i 2 3 )
and finally we can define the equilibrium constant Ky (T, V) as
Kn (T, V) =

dFo
exp (_T(?] — Nibl N2b2 N3b3 .= exp (Z bi In{i) = é‘lbl §2b2 §3b3

recall & = Z e~#¢® and the b; are the numbersin the constraintegn.
S

So for our case

Vs

Kn (T, V) =

uNd

Now Lets try to calculate ¢; and hence

get an expression for the chemical potential

gi
. =—=KTIn —
J NJ
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OK, sododo thiswe need to evaluate ¢j = Z e~ B,

ri
WhETrE I'; enumerates the states of molecule type i. We will assume a non —
relativistic single particle to eneumerate the states. | will try to do the
relativistic case later. Inthe classical case fixing it up for Quantum
mechanics which worries about the uncertainty prinicple to bringin #

Thiswill be

§i=Ff daff i 2:]'y i ]dpxclpydpﬁ
V(e (B
— exp| — |d
h3 [Im p(Zm p]

However see Reif pp 353 — 360 where this is done by the standard particle in

3

a box method where one makes an equivalent box in phase space
and sums over nyy , by finding the volume in n — space. We find
Vv 2 amj \¥2
" @n h)? ( B ]

So now lets put it all together:

V
gj = g (2 ﬂ'mj k-l_)s/2

. N;
definen; = =2
\Y

M=

—KT In|

(2m; KT)¥?] for j = up or down for the two quarks

3n;
h° n;

u =—KkT In[ 2 7zm, KT)¥?|

3
fi°n,
Now | am going to do this relativistically since we

would now like to create pairs. Really I need to reevaluate
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=) ePean = e PNPEHE whichisapain. I found the
fi Fi

answer on the web. But I will cheat and just add the rest
mass into the chemical potential. For the pion I will also add
an extra factor ¢y which represents the ""binding energy"*
for the pion. There will be a requirementon this. I will

leave out c? and the masses of the quarks will be m

yj=—kT|n[

(27mg KT)¥?] +mq

3N
h° n;j

I,lﬂ:-kT In[

@ am, KT)¥?] + m, + €
fis n,

Now | am going to assume that we are at T where we have
the requirement from before now written out explicitely that
Zﬂi bi=0=—pu—pa+pz SO piz = py + pa

I ignore the spins of the quarks, colorsetc

2 KT In[ @ amgKT)¥?] —2mq =
fin
q
KT In[ 2 nmm, kT)3/2] -m; — €
h3
Ny
5 3 3/2
_1_ _2_7T_ _rn_q. e_zﬁmq = Mx e—ﬁm,r e—ﬁfo
m\gp Ng? Ny

or solving for the equlilibrium constant

eﬁ (M;—2 Mq+ep)

3/2
an ( 2x ]3/2 qu /

n, \ g#? My
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Where now you see the relationship between the masses,

the number densities and the **biniding energy*". This really
does not make sense, but I think what itis telling us is that
the ideal gas approximation is lousy near T¢ and that there is

some potential that is not taken into consideration which

is driving the quarks together to make pions.

We can solve for the equilibrium constant with some
assumptions about the quark masses. Lets also assume that M

Mg and ¢ are functions of the temperature then

are.
Ng

2 21 |2

=5

As long as b = (m;-2 Mq + €o) < 0 this makes some sense.

Nz

If T gets bigger then there are more quarks,

if T gets smaller then there are more pions.

If it becomes positive,
then the formulais funny in that it gets large for T either
small or large. (we might be able to do something to fix this

case us if the masses have a jump at T¢)

The problem of course is that below T¢ there should be no
quarks and presumably above T¢ there should be no pions,
but this doesnt hold true for this eqn. The problemis thatin a
phase transition, the free energy should have a singurity,
and of course, the energy for the ideal gas doesnt have
this. Note that for a first order phase transition,

the first derivative of the Free energy has a discontinuity
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of isill defined. Ror a second order phase transition,

the second derivative of F hasadiscontinuity or isill defined.

Also, whereare the gluons? Inany case,
if the free energy, or the partition function has a singularity,
then u will have a jump. (I will comment on the relationship

between this fact and u across a phase transition in a next.)
Z biui =0
i

is the regirement. In our case where we assume that 2

qguarks makes a pion then we will require;uq + ug = px

Now the chemical potential (dF)

ow tne cnemical potentia ji—=f§ -

i & dN; T,V.N

can be a function of Temperature. Since
the first derivative of F will have a
discontinuity at the phase transition,

pwill have a jump. Now lets suppose we have
adifferentsystem, like ice and water. Then
our equation for chemical potential is

pwater = Hice @Cross the phase transition. Nevertheless,

the ' sdochange. Just like the fact that Tyater = T jce

for asystem in equlibrium,

but the T'sare changing as we bring
a system through the phase transition.

The final resolution of the problem
of the masses and and chemical potential is

1. the chemical potentials do have to be equal if there is
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only one species that changes phase (like water),

but if there are several (our case), thenitsthe equation Z biui=0
i

As long as these eqations are obeyed then the systemiisin
equilibrium but the chemical potentials can change. In our case,
I believe they jump due to the change in mass.
2. The chemical potential tells us how
hard it is to make a particle. When we are near Tc its
complicated and involves a lot more than the masses —
it also involves whatever potentials that are in the system —
that is what confinement and chiral symmetry breaking are about. What
someone has to do is to give us the right Hamiltonian at Tc so we

can calculate the correct energy to put into the partition function.
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13

So lets try to make a model . Remember

ibi Bi=0
=1

where we have the various species denoted by B; -

Zbi ui =0 For chemical equilibrium
i

I change my notationabit.

1
= -KT IN[ —— @nligk1)*2] 2hig (T)

1
. =--KT In [ ——— (@i, KT)3/2] + My (T) + 0 (T)

3/2
nq2 271 3/2 qu

Ny i Bh? My

Let the values of M, (T) and Mq (T) be the temperature dependent
values of the masses and € (T) the binding energy of the pion. Now
lets just take the dressed quark masses that Fries et al use.

Below Tc we know Mg (T > Tc) = Mg = 260 MeV

Above T¢ Mg (T > Tc) =5 MeV

Below T¢ M, = 135 MeV

Above T¢ M, = ? =X

Below T¢ €9 = ?=385 (which 1 calculate below)

Above T¢ €9 = 0 (the pions have no binding energy)

For ease let set the binding energy below Tc

Mr-2Mg+eg=0 Soep=2Mg-M,; =2 (260) - 135 =385

So then now we can solve for M, above T¢ by requireing

nq2 / n, justbelow T¢ to be the same as just above T¢
Now from above, so that the equations make sense

and we wi Il use the chemical eqilibirumconditionon to find x and g (T)

startbelowT. . I will use 170 MeV for T¢

aB (Mr+eo-2 Mg)
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3/2

3/2 2
( ) ( ) e,s(M,+eo-qu>=(
Bh? M BA?
3
2

3
(2 InMg - InMy) + B (My + €0 - 2 Mg) = 5

3 (135 + 385 - 2 % 260)
— (2 1n260 - In135) +
2 170

3 X
9.32=4.828- — Inx + - .0588

2 170

X 3
4.5508 = —— - — Inx
170 2

773.636 = x - 225 Inx
X = 40 MeV ??

24,3/2
[ a ] @B (Mr+e0-2Mg)

7!'

(2 InMg - InMy) + B (M + €0 - 2 Mg)

3 X-2%5
= — (2In5-1Inx) + ———
2 170



