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Spherical Harmonic

The spherical harmonics  are the angular portion of the solution to Laplace's equation in 

spherical coordinates where azimuthal symmetry is not present. Some care must be taken in identifying
the notational convention being used. In this entry,  is taken as the polar (colatitudinal) coordinate

with , and  as the azimuthal (longitudinal) coordinate with . This is the 

convention normally used in physics, as described by Arfken (1985) and Mathematica (in mathematical 

literature,  usually denotes the longitudinal coordinate and  the colatitudinal coordinate). Spherical 

harmonics are implemented in Mathematica as SphericalHarmonicY[l, m, theta, phi].

Spherical harmonics satisfy the spherical harmonic differential equation, which is given by the angular 

part of Laplace's equation in spherical coordinates. Writing  in this equation gives

(1)

Multiplying by  gives

(2)

Using separation of variables by equating the -dependent portion to a constant gives

(3)

which has solutions

(4)

Plugging in (3) into (2) gives the equation for the -dependent portion, whose solution is

(5)

where , , ..., 0, ..., , l and  is an associated Legendre polynomial. The 

spherical harmonics are then defined by combining  and ,

(6)
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where the normalization is chosen such that

(7)

 (8)

(Arfken 1985, p. 681). Here,  denotes the complex conjugate and  is the Kronecker delta. 

Sometimes (e.g., Arfken 1985), the Condon-Shortley phase  is prepended to the definition of 

the spherical harmonics.

The spherical harmonics are sometimes separated into their real and imaginary parts,

(9)

(10)

The spherical harmonics obey

(11)

(12)

(13)

where  is a Legendre polynomial.

Integrals of the spherical harmonics are given by

(14)

where  is a Wigner 3j-symbol (which is related to the Clebsch-Gordan coefficients). 

Special cases include

(15)

(16)

(17)
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(18)

(Arfken 1985, p. 700).

The above illustrations show  (top),  (bottom left), and 

(bottom right). The first few spherical harmonics are
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Written in terms of Cartesian coordinates,

(19)

(20)
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 (21)

so

(22)

(23)

(24)

(25)

(26)

(27)

The zonal harmonics are defined to be those of the form

(28)

The tesseral harmonics are those of the form

(29)

(30)

for . The sectorial harmonics are of the form

(31)

(32)

Condon-Shortley Phase, Correlation Coefficient, Laplace Series, Sectorial Harmonic, Solid 
Harmonic, Spherical Harmonic Addition Theorem, Spherical Harmonic Differential Equation, Spherical
Harmonic Closure Relations, Spherical Vector Harmonic, Surface Harmonic, Tesseral Harmonic, Zonal 
Harmonic

http://functions.wolfram.com/Polynomials/SphericalHarmonicY/,
http://functions.wolfram.com/HypergeometricFunctions/SphericalHarmonicYGeneral/
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