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matrix elements (which will be operators) are labeled arow, column as follows

kets will be column vectors
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bra’s will be row vectors ( )11 12 13c c c

we will often just label this as

( )1 2 3c c c

many operations, like adding (subtracting), multiplying by a constant, and taking 
the real or imaginary part means just doing it term by term. You can add two
matrices, two column vectors, but you cannot add a matrix and a column vector
or add a row vector to a column vector – just like you cannot add a bra to a ket
or add a operator to a ket



matrix multiplication
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• we will always multiply rows by columns and put the 
answer in the row/column used. First lets multiply a row 
by a column which is like multiplying a bra by a ket.         
〈a |b〉 which makes a number

• Multiplying column vector by a matrix is like operating on 
a ket
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• Multiplying two matrices is like combining two operators 
Here I have only colored in a a few examples

• Multiplying a row by a matrix is like combining a bra and 
a matrix. We will ususally not do this
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Hermitian conjugate
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So we just interchange the rows and columns and then take the complex
conjugate of everything



Determinant of a matrix
• The determinant of a matrix A denoted as det A  is explained at

– http://mathworld.wolfram.com/Determinant.html
– http://mathforum.org/library/drmath/view/51440.html

• Here are a couple tricks to figure out the determinant
• For a 2x2 matrix its easy
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Note that this is just one diagonal (red) minus the other diagonal (blue)
Note also that the matrix with a | | around it means the determinant



Determinant 3x3 of a matrix
• For a 3x3 matrix we multiply the diagonal numbers 

together. Notice that when you come to the end of a 
row/column you just wrap around
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So we start with a11 a22 a33+ a12 a23 a31+ a13 a21 a32+



Determinant of 3x3 a matrix

Then we go the other way but put a negative sign
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So finally we have det A=
a11 a22 a33+ a12 a23 a31+ a13 a21 a32 –(a13 a22 a31+ a11 a23 a32+ a12 a21 a33)

-(a13 a22 a31+ a11 a23 a32+ a12 a21 a33)



Finding the eigenvalues and eigenvectors of a 2x2 matrix

When we want to find the eigenvalues and eigenkets of an operator in matrix form we 
can just find  the eigenvalues and eigenvectors as follows
Let's start with a matrix  and a column vector . If  isA X X  an eigenvector of 
then we can write

=   where  is a number (it will of course turn out to be several numbers -
the eigenvalues.)  will stand for the identity matrix - i.e. it has 1's down the  di
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Finding the eigenvectors
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Unfortunately this does not simplify much and we have 
two sets of eigenvalue+eigenvector
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Diagonalizing a matrix
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We will talk about changing basis later, but let me just tell you 
that you can change the basis on an operator to diagnolize it. 
This is simple. The eigenvalues are the same

1= ( ) 4 (
2

a a a a aλ± + ± + 2
22 ) )

The matrix becomes just 
0

0
 and the eigenvectors are 

1 0
    and 

0 1

a

λ
λ

+

−

+ −

⎡ ⎤−⎣ ⎦

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

X X


