### J/ $\psi$ Production in $\sqrt{s} = 200$ GeV p+pCollisions with the PHENIX Detector at RHIC

Hiroki Sato, Kyoto University for the PHENIX collaboration

15<sup>th</sup> International Spin Physics Symposium (SPIN 2002)

Brookhaven National Laboratory, Upton, NY September 9, 2002

# $\underline{J/\psi}$ production in p+p collisions at $\sqrt{s} = 200 \ GeV$

- o The highest energy measurement of the production cross section of  $J/\psi$
- o Discriminate theoretical models for the production mechanism  $\rightarrow$  critical to extract  $\Delta G(x)$  from  $A_{LL}$  of  $\vec{p}+\vec{p}\rightarrow J/\psi+X$
- o Reference point for Au+Au data to discuss suppression or enhancement of  $J/\psi$  production in heavy ion collisions



 $\sqrt{s}$  dependence of the J/ $\psi$  production cross section with previous lower-energy experiments

# • • • Theoretical models for the J/\psi production

#### Color-Evaporation Model (CEM)

- "Ignore" color and other quantum numbers of an intermediate  $\overline{cc}$  pair
- Certain fraction (free parameter) of all produced  $c\overline{c}$  pairs form each charmonium

#### Color-Single Model (CSM)

- A  $c\overline{c}$  pair needs to be the color-single state and have the same quantum numbers as the charmonium to be formed
- No free parameter
- Cross section disagrees with Tevatron data especially at high  $p_T$

#### Color-Octet Model (COM)

- Different state of a  $c\overline{c}$  pair (including color-octet states) can form a charmonium with (a) soft gluon emission(s).
- Color-octet matrix elements are extracted from data  $\rightarrow$  still in controversial
- Polarization of the high- $p_T$ J/ $\psi$  disagrees with Tevatron data

#### The PHENIX Detector in Run-2

- Central Arms to detect hadrons, electrons and photons
  - $|\eta| < 0.35, \Delta \varphi = \pi$
  - $p_T > 0.2 \text{ GeV}/c$
- South Muon Arm to detect muons in the forward region
  - 1.2 <  $\eta$  < 2.2,  $\Delta \phi$  = 2 $\pi$
  - $p_{tot} > 2 \text{ GeV}/c$
- Beam-Beam Counter (BBC) to trigger p+p interactions
  - $3.0 < |\eta| < 3.9$
  - Trigger efficiency ~ 50% for p+p inelastic events



Independent measurements of J/ $\psi$  using both e<sup>+</sup>e<sup>-</sup> channel and  $\mu$ <sup>+</sup> $\mu$ <sup>-</sup> channel

### RHIC Integrated p+p luminosity



RHIC delivered 700nb<sup>-1</sup> to PHENIX

After an online vertex cut, PHENIX recorded 150 nb<sup>-1</sup>

Present preliminary analysis used data from: 81 nb<sup>-1</sup> (1.7 x 10<sup>9</sup>)  $\mu^{+}\mu^{-}$  48 nb<sup>-1</sup> (1.0 x 10<sup>9</sup>) e<sup>+</sup>e<sup>-</sup>

#### The PHENIX Muon Arm

- Detect muons with  $p_{tot} > 2 \text{ GeV}/c$ , 1.2<  $\eta$  < 2.2 (South Arm)
- Pre-hadron-rejection with Central Magnet steel ( $\lambda_{int} \sim 5$ )
- Muon Tracking Chamber (MuTr)
  - Measure momentum of muons with cathode-readout strip chambers at 3 stations inside Muon Magnet
- Muon Identifier (MuID)
  - π/μ separation with 5-layer sandwich of chambers (Iarocci tubes) and steel
  - Trigger muons
- Successfully operated first time during Run-2



#### Muon LVL-1 Trigger

- Coincidence of fired MuID planes of each "quadrant"
- One quadrant for "single-muon trigger" and more than one quadrant for "dimuon trigger" → used for this analysis
- Inefficiencies from hardware dead time is 1~2%



#### $J/\psi \rightarrow \mu^+\mu^-$ signal



- Significant enhancement of unlike-sign pair in the  $J/\psi$  mass region
  - Peak (3156  $\pm$  74 MeV/ $c^2$ ) is consistent with J/ $\psi$  mass
  - Mass width  $(257 \pm 75 \text{ MeV}/c^2)$  is consistent with expectation  $\rightarrow$  further improvement is expected
- $N_{J/\psi}$  = 36 in 2.5<mass<3.7GeV/c assuming same count of unlike and like-sign pairs from background (confirmed with simulation)
- Systematic error on the count ~10 % by changing mass cut

# $J/\psi \rightarrow \mu^+\mu^-$ Acceptance and Reconstruction efficiency





$$< A_{cc} \varepsilon_{reco} >_{1.2 < y < 2.2}$$
  
= **0.0163** ± **0.031**

- $\circ$   $p_T$  dependence is small
- Including MuID trigger efficiency (~0.62)
- Major uncertainties
  - MuID efficiency → 11 %
  - MuTr efficiency → 10 %
  - J/ $\psi$  polarization( $\lambda$ )  $\rightarrow$  10% ( $|\lambda|$ <0.3 is assumed)

## • • BBC efficiency and luminosity

$$\varepsilon_{BBC}^{J/\psi} L = \frac{\varepsilon_{BBC}^{J/\psi}}{\varepsilon_{BBC}^{inela}} \frac{N_{int}}{\sigma_{inela}} = \frac{0.741.73 \times 10^9}{0.514.73 \times 10^9} = 60nb^{-1}$$

- $\sigma_{inela}$ : p+p inelastic cross section (PYTHIA,  $\sqrt{s}$  fit)
- $\varepsilon_{BBC}^{J/\psi}$ : BBC efficiency for p+p  $\to$  J/ $\psi$ +X $\to$   $\mu$ + $\mu$  events

  - \*\*BBC efficiency tor p+p  $\rightarrow$  J/ $\psi$ +A $\rightarrow$   $\mu$ + $\mu$  Composite  $p_T$  (J/ $\psi$ ) dependence is small consistent with p+p  $\rightarrow$  J/ $\psi$ +X $\rightarrow$  e+e- (0.73) and p+p  $\rightarrow$   $\pi^0$  X simulation

- $\varepsilon_{BBC}^{inela}$ : BBC efficiency for p+p inelastic events
- $N_{int}$ : Number of interaction triggers with vertex cut (|z|<38cm)

Real data

Analysis of  $\varepsilon_{BBC}^{inela}\sigma_{inela}$  is still in progress

Assign conservative 20% error on it

## Br $d\sigma/dy|_{y=1.7}$ result and its uncertainties

$$B_{r} \frac{d\sigma_{J/\psi}}{dy} \bigg|_{y=1.7} = \frac{N_{J/\psi}}{A_{cc} \varepsilon_{reco} \varepsilon_{BBC}^{J/\psi} L \Delta y}$$

- o  $N_{J/\psi} = 36 \pm 7 \text{ (stat.)} \pm 4 \text{ (syst.)}$
- $\bullet \ \ A_{cc} \varepsilon_{reco} = 0.0163 \pm 0.031$
- o  $\varepsilon_{BBC}^{J/\psi} L = 0.60 \pm 0.12 \text{ nb}^{-1}$
- $\triangle y$ : rapidity coverage = 1.0

Br 
$$(J/\psi \rightarrow \mu^+\mu^-)$$
  $d\sigma_{J/\psi}/dy|_{y=1.7.} = 37 \pm 7$  (stat.)  $\pm 11$  (syst.) nb   
PHENIX Preliminary

### $J/\psi p_T$ distribution and $\langle p_T \rangle$



 $p_T$  shape is consistent with the PYTHIA (color-singlet model) prediction

PHENIX Preliminary

 $< p_T >_{v=1.7} = 1.66 \pm 0.18 \text{ (stat.)} \pm 0.09 \text{ (syst.)} \text{ GeV/} c (p_T < 5 \text{ GeV/} c)$ 

High  $p_T$  contribution is expected to be small (~3%) assuming  $p_T$  function shape consistent with Tevatron data

# <p<sub>T</sub>> comparison with lower energy experiments



- Our result of  $\langle p_T \rangle$  is slightly higher than lower energy experiments
- Our result is consistent with PYTHIA prediction including  $< k_T >$  tuned to reproduce  $< p_T >$  and  $p_T$  spectrum of E672/E706 experiments at  $\sqrt{s} = 39$  GeV (Phys. Rev. D62, 012001)

### Electron Measurement with the Central Arms



- o Charged tracks are identified with Drift Chambers (DC) and Pad Chambers (PC1/2/3)
- o Ring Imaging CHerenkov detector (RICH) and Electro-Magnetic Calorimeter (EMCal, i.e. PbSc/PbGl) are used to identify electrons
- EMCal is also used for electron/photon Trigger

**Cross section of the PHENIX Central Arms** 

### Electron LVL-1 Trigger and its Efficiency

- At least one energy sum of EMCal 2x2 towers exceeds the threshold (0.8GeV) → single electron/photon trigger
- o Trigger efficiency for  $J/\psi \rightarrow e+e-$  is estimated to be 0.90+0.06-0.07
  - Use Monte-Carlo tuned to describe single-photon efficiencies with real data well



### $J/\psi \rightarrow e^+e^-$ signal



$$N_{J/\psi} = 24 \pm 6$$
 (stat.)  $\pm 4$  (syst.)

# $J/\psi \rightarrow e^+e^-$ Acceptance and Reconstruction efficiency

- $< A_{cc} \mathcal{E}_{reco} >_{|y| < 0.5}$ =  $0.0163 \pm 0.0020$
- o Flat rapidity distribution in |y|<0.5 is assumed
- Uncertainties from unknown  $p_T$  distribution is estimated to be 7%



### $Br d\sigma/dy/_{y=0} result$

$$Br \frac{d\sigma}{dy} \bigg|_{y=0} = \frac{N_{J/\psi}}{A_{cc} \varepsilon_{reco} \varepsilon_{run-run} \varepsilon_{trig} \varepsilon_{BBC}^{J/\psi} L \Delta y}$$

$$N_{J/y} = 24 \pm 6 ({
m stat.}) \pm 4 ({
m syst.})$$
  $A_{cc} \ arepsilon_{reco} = 0.0163 \pm 0.0020$   $\ arepsilon_{run-run} = 0.87 \pm 0.09 \ 
ightarrow {
m additional Run-by-Run correction factor}$   $\ arepsilon_{trig} = 0.90 + 0.06 - 0.07$   $\ arepsilon_{BBC}^{J/\psi} = 0.75 \pm 0.11$   $L = 48 \pm 10 \ {
m nb}^{-1}$   $\ \Delta y = 1.0$ 

$$\rightarrow$$
 Br (J/ $\psi$  $\rightarrow$ e<sup>+</sup>e<sup>-</sup>) d $\sigma$ /dy|<sub>y=0</sub> = 52 ± 13 (stat.) ± 18 (syst.) nb   
PHENIX Preliminary

## J/ψ Rapidity distribution and integrated cross section



- Rapidity distribution is consistent with PYTHIA
- A global fit gives

Br 
$$(J/\psi \rightarrow h/t) \sigma (p+p \rightarrow J/\psi X)$$
  
= 226 ± 36 (stat.) ± 79 (syst.) nb  
 $\sigma (p+p \rightarrow J/\psi X)$   
= 3.8 ± 0.6 (stat.) ± 1.3 (syst.)  $\mu b$ 

PHENIX Preliminary

# Total Cross section compared with the Color-Evaporation Model prediction



- CEM Parameters are fixed by fitting low energy data
- Our result agrees with the CEM prediction at  $\sqrt{s}=200 \text{ GeV}$

#### In Run-3 and later

- Much higher statistics (>10 times) leads to
  - Measurement of the  $J/\psi$  polarization (spin alignment)  $\rightarrow$  critical test to discriminate theoretical models
  - More precise measurement of the  $p_T$  slope
- Spin physics in longitudinally polarized p+p collisions
  - Double-longitudinal spin asymmetry  $(A_{LL})$  of the J/ $\psi$  production  $\rightarrow$  polarized gluon density

$$A_{LL}^{p+p\to J/\psi+X} \equiv \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} = \frac{\Delta G(x_1)}{G(x_1)} \frac{\Delta G(x_2)}{G(x_2)} a_{LL}^{g+g\to J/\psi+X}$$

 $\Delta G(x)$ : polarized gluon density

 $a_{LL}^{g+g\to J/\psi+X}$ : partonic subprocess asymmetry

### Summary

- $\circ$  Cross section of inclusive J/ $\psi$  production was measured with PHENIX using both  $e^+e^-$  decay channel (|y|<0.35) and  $\mu^+\mu^-$  decay channel (1.2<y<2.2) in Run-2 p+p collisions at  $\sqrt{s}$ =200 GeV.

- o Br(J/ $\psi \to \mu^+ \mu^-$ ) d $\sigma_{J/\psi}$ /dy| $_{y=1.7} = 37 \pm 7 (stat.) \pm 11 (syst.)$  nb o Br(J/ $\psi \to e^+ e^-$ ) d $\sigma_{J/\psi}$ /dy| $_{y=0} = 52 \pm 13 (stat.) \pm 18 (syst.)$  nb o  $p_T$  distribution and  $< p_T >_{y=1.7} = 1.66 \pm 0.18 \pm 0.09$  GeV/c (1.2<y<2.2,  $p_T$ <5GeV/c) are obtained which are consistent with PYTHIA (Color-Singlet model).
- Rapidity fit including both results gives

- $\sigma_{J/\psi} = 3.8 \pm 0.6 \text{(stat.)} \pm 1.3 \text{(syst.)} \ \mu \text{b}$  which agrees with the Color-Evaporation model prediction.
- o In Run-3, measurement of the J/ $\psi$  polarization and  $A_{II}$  is expected.

# Comparison with the Color-Singlet Model prediction using PYTHIA



- Assuming direct  $J/\psi$  (not from decays of  $\chi_c$ ,  $\psi$ ', nor *b*-quark) is dominant
- Tune PYTHIA parameters to reproduce Tevatron (fixed target experiments)  $p_T$  spectra and open-charm cross-section measurement with PHENIX (single electron channel) at  $\sqrt{s} = 130$  GeV