J/ ψ Production in p+p Collisions at $\sqrt{s} = 200$ GeV

Hiroki Sato

Dept. of Physics, Kyoto University

- Introduction
- Experimental Setup
- Data Analysis
- Results and Discussions
- Conclusion

J/ψ Measurements at RHIC-PHENIX

- Better understanding of Quantum Chromo
 - dynamics (QCD)
 - charmonium production includes
 - √ perturbative QCD aspects
 - √ non-perturbative QCD aspects

Cross sections Polarization Relative yields $(\chi/\psi \text{ etc})$

In wide energy range

- Probe for new physics at RHIC
 - □ QGP physics with heavy-ion collisions at highest energy ($(\sqrt{s_{NN}})_{max}$ = 200 GeV for Au+Au)
 - □ Spin physics with polarized p+p collisions at highest energy ($\sqrt{s_{max}}$ = 500 GeV)

(Un-polarized) p+p data are important as reference

Charmonium production in hadron-hadron collisions

- Charmonium production in a hadron-hadron collision includes
 - □ Production of a cc pair (perturbative QCD calculation is applied)
 - □ Hadronization of the pair into a charmonium (non-perturbative QCD phenomenon) → not clearly understood yet
 - Color-evaporation model
 - Color-singlet model
 - Color-octet model

Gluon fusion is dominant

$$\sigma(pp \to \psi X) = \iint dx_1 dx_2 g(x_1, Q) g(x_2, Q) \sigma(gg \to \psi)$$
$$\sigma(gg \to \psi) = \sigma(gg \to c\bar{c}) P(c\bar{c} \to \psi)$$

J/ψ as a probe for new physics at RHIC

Heavy Ion Physics

Search for the signature of the **Quark-Gluon Plasma** J/ψ yield in heavy ion collisions can be

Suppressed due to Debye color screening OR

Enhanced due to Recombination

Important to compare J/ψ yields in Au+Au, p+p (Run 2~) and d+Au (Run-3~) collisions to separate the normal nuclear effects

Spin Physics

- First direct measurement of the polarized gluon distribution, ΔG(x), in the proton using double-longitudinal spin asymmetries for the J/ψ production in polarized p+p collisions (Run-3~)
- Understanding of the production mechanism is a key issue → unpolarized p+p data is useful (Run-2~)

The RHIC accelerator complex

- Two independent rings which can accelerate various kinds of ions (proton to Au nucleus) and polarized protons
- 6 interaction points and 5 experiments
- $\sqrt{s_{\text{max}}}$ = 500 GeV for p+p (200 GeV for Run-2)
- $L_{\text{max}} = 2 \times 10^{31} \text{ cm}^{-2} \text{sec}^{-1}$ for p+p

The PHENIX Detector

- \bullet *e*, γ , *h* (Central Arms)
 - \Box $|\eta| < 0.35$, $\Delta \varphi = \pi$
 - $p_T > 0.2 \text{ GeV}/c \text{ (charged particles)}$
- μ (Muon Arms)
 - \Box 1.2 < $|\eta|$ < 2.4, $\Delta \phi = 2\pi$
 - $\Box p_{tot} > 2 \text{ GeV}/c$
- Interaction-trigger and vertex Detectors
 - □ Beam-Beam Counters $(3.0 < |\eta| < 3.9)$
 - □ Zero-Degree Calorimeters $(|\eta| > 6.2)$
 - □ Normalization Trigger Counters $(1.1 < |\eta| < 2.8)$

Independent measurements of J/ ψ using both e^+e^- channel and $\mu^+\mu^-$ channel

Low momentum (p_T) cut and wide rapidity coverage \rightarrow enables the extraction of the total production cross-section at the highest energy

The PHENIX Muon Arms

- Detect muons with
 - \square $p_{tot} > 2 \text{ GeV}/c$
 - □ -1.2 > η > -2.2 (South Arm) or 1.2 < η < 2.4 (North Arm)
- Muon Tracker (MuTr)
 - Measure momentum of muons with cathode-readout strip chambers at 3 stations inside Muon Magnet
- Muon Identifier (MuID)
 - α/μ separation with 5-layer sandwich of chambers (Iarocci tubes) and steel
 - □ Trigger muons

South Muon Arm was successfully operated first time during Run-2

Muon Trigger in Run-2 p+p

- Coincidence of fired planes of each quadrant gives a "quadrant trigger"
- Minimum bias (BBC) AND one quadrant for the "single-muon trigger" and more than one quadrant for the "dimuon trigger"
- □ Inefficiencies from hardware dead time is 1~2%
- □ Trigger rate was dominated by non-collision beam related background → survived with Run-2 luminosity (~100 Hz for the single-muon trigger and ~10 Hz for the dimuon trigger)

Run-2 p+p Integrated Luminosity

RHIC delivered 700 nb⁻¹ to PHENIX

After online vertex cuts (75 cm), PHENIX recorded 150 nb⁻¹

For J/ψ analyses, 81 nb⁻¹ for μ⁺μ⁻ and 48 nb⁻¹ for e⁺e⁻ are used

p+p Muon Event sample

150nb⁻¹

Number of p+p minimum- bias triggered events	196M
Number of single-muon triggered events	34M
Number of dimuon triggered events	4.8M

- Minimum-bias triggered events and single-muon triggered events are used to evaluate detector performance
- Dimuon triggered events are used to obtain the number of $J/\psi \rightarrow$ Contains most (>90%) of J/ψ statistics

Analysis procedure

$$B_{r}(J/\psi \to \mu^{+}\mu^{-})\frac{d\sigma_{J/\psi}}{dy} = \frac{N_{J/\psi}}{\eta_{acc}\varepsilon_{MuID}^{J/\psi}\varepsilon_{MuTr}^{J/\psi}\varepsilon_{BBC}^{J/\psi}L\Delta y}$$

- $N_{J/\psi}$: Number of observed J/ ψ 's in 1.2<y<2.2
- η_{acc} : South Muon Arm Acceptance times reconstruction efficiency for J/ ψ (1.2<y<2.2) $\rightarrow \mu^+\mu^-$ with100% chamber efficiencies
- ε_{MulD} : Efficiency correction due to real chamber efficiencies of MulD
- ε_{MuTr}: Efficiency correction due to real chamber efficiencies of MuTr
- $\mathcal{E}_{BBC}^{J/\psi}$: BBC trigger efficiency for p+p \rightarrow J/ ψX events
- L: Luminosity with good vertex cut (|z-vertex|<38cm)

Dimuon mass

|Collision z-vertex| < 38cm Track z-vertex matching < 30cm

- Significant enhancement of unlike-sign pair in the J/ψ mass region
 - ✓ Peak (3156 \pm 74 MeV/ c^2) is consistent with the J/ ψ mass
 - ✓ Mass width $(257 \pm 75 \text{ MeV}/c^2)$ is consistent with expectation
- 36 counts in 2.5<mass<3.7GeV/c² assuming the same count of unlike and like-sign pairs from background → confirmed with simulation
- Systematic error on the count ~10% by changing mass cut

J/\u03c4 Acceptance \u03c4 reconstruction efficiency with real chamber efficiencies

- Dead HV and electronics maps and chamber efficiencies obtained from real data are used
- do/dy in 1.2<y<2.2 can be measured with the South Muon Arm
- p_T dependence is small
- Uncertainty from unknown J/ψ polarization ~ 10% assuming |λ|<0.3</p>

BBC efficiencies and luminosity

$$\varepsilon_{BBC}^{J/\psi}L = \frac{\varepsilon_{BBC}^{J/\psi}}{\varepsilon_{BBC}^{inela}} \frac{N_{BBC}}{\sigma_{inela}}$$
$$= \frac{0.74}{0.51} \frac{1.72 \times 10^9}{42mb}$$
$$= 59nb^{-1}$$

Real data

- $\mathcal{E}_{BBC}^{J/\psi}$: BBC efficiency for p+p \rightarrow J/ ψ X \rightarrow $\mu^+\mu^-$ events p_T and rapidity dependences are small
- **E**_{BBC} inela: BBC efficiency for p+p inelastic events
- N_{BBC} : Number of BBC triggers with a vertex cut (|z|<38cm)
- σ_{inela} : p+p inelastic cross section = 42mb (\sqrt{s} fit \rightarrow 3% error)
 - Systematic error of $\varepsilon_{BBC}^{inela}$ from the uncertainty of initial particle distribution is estimated to be 15% comparing PYTHIA with the UA1 (p_{τ}) and UA5 (rapidity) data
 - ullet Consistency check with the real data for $\varepsilon_{BBC}^{inela}$
 - ✓ Relative trigger efficiency $\varepsilon_{NTC}^{inela}/\varepsilon_{BBC}^{inela}$ is consistent with the relative trigger rate measured
 - \checkmark $\varepsilon_{BBC}^{inela}\sigma_{inela}$ is consistent with the machine value (18.5mb) within their uncertainties

Summary of systematic uncertainties

	Systematic Uncertainty
$N_{J/\psi}$	10% (cut dep.)
$\eta_{ ext{acc}}$	10% (J/ψ pol. dep., λ <0.3)
$\mathcal{E}_{MuID}^{J/.\psi}$	11% (run dep.)
$\mathcal{E}_{MuTr}^{}}$	10% (consistency with the real data)
$\mathcal{E}_{BBC}^{J/\psi}$	10% (initial particle-multiplicity)
$L \left(N_{ m BBC} / arepsilon_{ m BBC}^{ m inela} \sigma_{ m inela} ight)$	15% (initial particle-multiplicity)
Total	27%

Results and discussions

- $\blacksquare p_T$ distribution and $\langle p_T \rangle$
- Rapidity distribution
- Total cross section $(\sigma_{J/\psi})$
 - \Box \sqrt{s} dependence
 - ☐ Absolute value

$J/\psi p_T$ distribution and $< p_T >$

■ p_T -differential cross section (at low p_T) and $< p_T >$ are mainly sensitive to $< k_T > \to$ consistent with PYTHIA (color-singlet model) prediction with a reasonable value of $< k_T >$

J/ψ rapidity distribution and $\sigma_{J/\psi}$

- Rapidity-differential cross section is mainly sensitive to gluon distribution function g(x,Q) in the proton and consistent with some typical PDF sets
- Global fit including $J/\psi \rightarrow e^+e^-$ (y=0) data gives total cross section

Br $(J/\psi \to I^+ I^-) \sigma (p+p \to J/\psi X) = 226 \pm 36 \text{ (stat.)} \pm 79 \text{ (syst.)} \text{ nb}$ $\sigma (p+p \to J/\psi X) = 3.8 \pm 0.6 \text{ (stat.)} \pm 1.3 \text{ (syst.)} \mu b$

$\sigma_{J/\psi}$ (vs dependence)

$$\sigma_{J/\psi}(\sqrt{s}) \propto \int_{\sqrt{\tau}}^{1} \frac{dx}{x} g(x) g(\tau/x)$$

$$\sqrt{\tau} = 2m_c / \sqrt{s}$$

■ Our new result and lower-energy results are consistent with typical gluon distribution functions \rightarrow confirms the gluon fusion picture of J/ψ production in hadron-hadron collisions in a wide energy range

$\underline{\sigma_{J/\psi}}$ (absolute value)

- **Absolute normalization for \sigma_{J/\psi} is sensitive to production model**
 - □ Color-evaporation model (CEM) can explain $σ_{J/ψ}$ using $ρ_{J/ψ}$ (fraction of J/ψ to all produced copairs) ~ 0.06 determined by photo-production data
 - □ Color-singlet model (CSM)disagrees by a large (~20) factor
 - □ Color-octet model (COM) consistent but has large uncertainties from
 - Extraction of color-octet matrix element
 - Charm quark mass
 - Scales

Near future measurements

- **Polarization of J**/ ψ
 - Critical to separate production models
 - □ CEM zero polarization
 - □ CSM and COM sizable positive (transverse) polarization
- Double-longitudinal spin asymmetry (A_{LL}) for J/ψ production in longitudinally polarized p+p collisions
 - □ Polarized gluon density $(\triangle G(x))$
 - □ Large difference in a_{LL} according to production model
 - ~+1 (CEM)
 - ~ -1 (CSM)
 - $-0.3 \sim +0.7$ (COM)

$$A_{LL}^{p+p\to J/\psi+X} \equiv \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} = \frac{\Delta G(x_1)}{G(x_1)} \frac{\Delta G(x_2)}{G(x_2)} a_{LL}^{g+g\to J/\psi+X}$$

 $\Delta G(x)$: polarized gluon density

 $a_{LL}^{g+g\to J/\psi+X}$: partonic subprocess asymmetry

Conclusion

- With the South Muon Arm in the PHENIX detector covering 1.2 < y < 1.22.2, J/ψ particles have been clearly identified with a small background via $\mu^+\mu^-$ decays in the first ${\bf p}+{\bf p}$ Run at RHIC (Run-2) at $\sqrt{s} = 200 \text{ GeV}.$
- p_T distribution and $\langle p_T \rangle_{y=1.7} = 1.66 \pm 0.18 \pm 0.09$ GeV/c are consistent with **PYTHIA** prediction with a reasonable value of $\langle k_T \rangle$.
- Rapidity distribution including the e^+e^- decay channel is consistent with **gluon distribution function** as well as \sqrt{s} scaling of the total cross sections $\sigma_{\text{L/W}}(\sqrt{\text{s}} = 200 \text{ GeV}) = 3.8 \pm 0.6 \text{ (stat.)} \pm 1.3 \text{ (syst.)} \text{ } \mu\text{b}$ and lower energy results.
- The absolute normalization for $\sigma_{J/\psi}$ can be reproduced well by both the color-evaporation model and the color-octet model.
- These results are also important as reference for Au+Au and polarized p+p data.
- Further critical measurements to separate production models are planned in the near future at RHIC. Non-pQCD
 - \Box J/ ψ polarization

 \Box A_{LL} for J/ ψ production in longitudinally polarized p+p collisions