First spin results with PHENIX in RHIC Run-2 p+p collisions

Hiroki Sato, Kyoto Univ./RIKEN DIS'03, St. Petersburg, Russia April 24, 2003

Outline

- Spin Physics at RHIC
- Results with the PHENIX detector in Run-2 (2001-2002) p+p collisions
 - Cross sections
 - Single spin asymmetries (A_N)
- Future plan

Spin Physics at RHIC

Polarized p+p collisions at high energy (50 $< \sqrt{s} < 500$ GeV) enable us to study

- Spin structure of the nucleon
 - Direct measurement of polarized gluon distribution G(x)
 - Flavor sensitive measurement of polarized anti-quark distribution $\overline{q}(x)$
- Parity violating spin symmetries for physics beyond standard model

Relativistic Heavy-Ion Collider

Polarized proton collider RHIC

70% Polarization

$$L_{\text{max}} = 2 \times 10^{32} \text{ s}^{-1} \text{ cm}^{-2}$$
 $50 < \sqrt{s} < 500 \, GeV$

RHIC pC Polarimeters

200 MeV Polarimeter

RHIC Run-2 p+p condition

First polarized p+p collisions has achieved at $\sqrt{s} = 200$ GeV

- $<P_B>_{Yellow} \sim 0.17, <P_B>_{Blue} \sim 0.14$
- Transversely polarized protons \rightarrow measurements of A_N (left-right asymmetries) with various channels
- L_{int} ~ 150nb⁻¹ (triggered data) with PHENIX

The PHENIX Detector

- e, γ , h^{\pm} (Central Arms)
 - $|\eta| < 0.35, \ \Delta \varphi = \pi$
 - $p_T > 0.2 \text{ GeV}/c$
- μ (Muon Arms)
 - $-1.2 < |\eta| < 2.4, \ \Delta \varphi = 2\pi$
 - $-p_{tot} > 2 \text{ GeV}/c$
- Interaction-trigger and vertex Detectors
 - Beam-Beam Counters $(3.0 < |\eta| < 3.9)$
 - Zero-Degree Calorimeters $(|\eta| > 6.2)$
 - Normalization Trigger Counters $(1.1 < |\eta| < 2.8)$

The Beam-Beam Counters (BBC)

- Cherenkov radiators (Quartz) each mounted on a PMT
- Sensitive to charged particles with β > 0.7
- Cover $3.0 < |\eta| < 3.9$ with a full azimuth
- Primary trigger counter for p+p minimum bias (inelastic) events with ~50% efficiency
- Used as a luminosity monitor
- Determine event z-vertex positions (resolution ~2 cm for p+p → good enough for J/ψ)

96 PMTs in each arm

Central Arms

- Tracking
 - Pad Chambers (PC1/2/3)
 - Drift Chambers (DC)
- PID and Triggering
 - Ring Imaging CHerenkov detector (RICH)
 - Electro-Magnetic Calorimeter (EMCal, PbSc/PbGl)
- Both West and East Arms were operational in Run-2

Cross section of the PHENIX Central Arms

Muon Arms

- Detect muons with $p_{tot} > 2$ GeV/c, -1.2 $> \eta >$ -2.2 (South Arm) or 1.2 $< \eta <$ 2.4 (North Arm)
- Muon Tracking Chamber (MuTr)
 - Measure momentum of muons
 with cathode-readout strip
 chambers at 3 stations inside Muon
 Magnet
- Muon Identifier (MuID)
 - π/μ separation with 5-layer sandwich of chambers (Iarocci tubes) and steel
 - Trigger muons
- South Muon Arm was successfully operated first time during Run-2

Cross sections

- Cross section measurements are important as the baseline for both heavy-ion and spin physics at RHIC
- Test against perturbative QCD
- Results of high- $p_T \pi^0(p_T < 13 \text{ GeV/c})$ and J/ ψ will be shown here

$p+p \rightarrow \pi^0 X$ cross sections

- Up to much higher p_T
 compared to UA1
 (p_T<6 GeV/c)
- NLO pQCD calculation
 - CTEQ5M pdf
 - Potter-Kniehl-Kramer fragmentation function
 - $-\mu = p_T/2, p_T, 2p_T$
- Consistent with data within the scale dependence.

p+p → J/ψX cross sections

Rapidity Fit gives

Br (J/
$$\psi \rightarrow hh$$
) σ (p+p \rightarrow J/ ψ X)
= 226 ± 36 (stat.) ± 79 (syst.) nb
σ (p+p \rightarrow J/ ψ X)
= 3.8 ± 0.6 (stat.) ± 1.3 (syst.) μb

• Our result is consistent with \sqrt{s} scaling from lower energy results

Single-spin asymmetries (A_N)

$$A_N = \frac{1}{P} \cdot \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

- Motivated by large A_N
 measured by the FNALE704 experiment at highx_F at √s = 19.4 GeV
- Origin has not well understood theoretically
 - Quark-gluon correlation (higher-twist)?
 - $-\Delta L$?
- Application for high-energy polarized proton polarimetry

A_N from RHIC $\sqrt{s}=200$ GeV

BBC Asymmetries

Results are consistent with 0

Very-Forward γ and *n*

- Introduced as a polarized proton polarimeter at interaction region (thus called "Local" polarimeter)
- Measure very-forward ($|\eta| > 6.5$) photon and neutrons with low p_T ($p_T < 0.3$ GeV/c)
- In Run-2, installed in IP-12 region. In Run-3, installed also in IP-8 (PHENIX)

Photon and π⁰ asymmetry

A_N is Consistent with 0

Neutron asymmetry

- Unexpectedly large asymmetry has found -> No theoretical explanation so far
- EM-Cal results and H-Cal results are consistent

Neutron asymmetry phi dependence

Very clear azimuthal asymmetry

RHIC/Spin Present and Future

- Run-3 (2003, just started!)
 - $-\sqrt{s} = 200 \text{ GeV}, 3pb^{-1}$
 - $-p_{B} \sim 40\%$
 - A_{LL} for π^0 and charged hadrons -> $\Delta G(x)$
- Run-4 (2003-2004)
 - $-\sqrt{s} = 200 \text{ GeV}, 30 \text{pb}^{-1}$
 - $-p_{B} \sim 50\%$
 - A_{LL} for heavy flavors (single leptons, $e\mu$, J/ψ) -> $\Delta G(x)$
- Run-5 and later
 - $\sqrt{s} = 500 \text{ GeV}$
 - $-P_{B} \sim 70\%$
 - A_{LL} for Direct photons -> $\Delta G(x)$
 - A_1 for W bosons-> $\Delta q(x)$

Summary

- In Run-2, RHIC has successfully accomplished transversely polarized p+p collisions at √s = 200 GeV and PHENIX has accumulated L_{int} ~ 150nb⁻¹
- Cross sections for high- p_T π^0 and J/ ψ are consistent with pQCD predictions
- Preliminary results of A_N measurements are presented
 - Unexpectedly large asymmetry ($A_N \sim 0.12$) for neutron production at very-forward rapidity

Single Muons

Event vertex distribution containing µ

Asymmetric z-vertex distribution indicate $\pi/K \to \mu$ is dominant in inclusive singlemuon yield

 A_N of π/K can be obtained using single muons

Analysis is work in progress

Charged particle yield in Central Arm

 $3p_T$ bins, 0.8-2GeV/c, 2-4GeV/c, 4-6GeV/c

Number of min-bias triggers = 31×10^6

Charged-hadron Asymmetries Acceptance (Raw asymmetry) polarization correction (0.88) ~ 15%) of each fill .6 6GeV/c A_N(uncorr. 0.8-2GeV/c 2-4GeV/c 0 0.05 0.04 0.03 0.02 0.01 Work on progress! -0.01 -0.02Not corrected with -0.03• Trigger bias -0.04Background dilution

Expected An by Single Muons

- •P(m) carries most of original P(p)
- •A_N(m) should be similar to A_N(p)
- • $Xf(m) \sim 0.9 Xf(p)$

